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 First, let me express my gratefulness to the Indian Association for General 
Relativity and Gravitation for inviting me to deliver the Vaidya—Raychaudhuri 
Endowment Award Lecture. I feel greatly honoured. I was a direct student of Late Prof. 
A.K. Raychaudhuri and look upon Prof. P.C. Vaidya as my teacher. 
 I shall describe today a useful mathematical tool that allows us to paste together 
two slices of space-time expressed in terms of different coordinate systems on the two 
sides of a 3-dimensional hyper-surface. This lecture may be useful to young workers in 
general relativity. 
  

Matching conditions of space-time slices 
 

Let us take a 3-space S dividing the space-time into two distinct four dimensional 
manifolds V+ (interior space-time) and V- (exterior space-time). If the same coordinate 
patch covers V+ and V- then we demand simply that the components of the metric tensor 
and their first derivatives be continuous across S. But we are going to describe a method 
which is independent of the coordinate system. We may cut out two slices of 4-spaces 
expressed in terms of different coordinate systems and paste them together on the two 
sides of a 3-space. The junction conditions then give the relations between the 
coordinates on the two sides. The method was originally given by Israel (1966, 1967). 
 The first condition for pasting is that the 3-space will have the same well-defined 
intrinsic geometry as viewed from the two sides. The two 4-spaces V+ and V- are 
supposed to be covered by the coordinate patches ya

± and the metrics are given by 
 
                                        ds2

±  =  aab
±

 dya
± dyb

±                                                                                        (1) 
The Greek indices stand for 1, 2, 3, 4. 

If gij  be the intrinsic metric of the 3-space S covered by the coordinates xi  (latin 
indices represent 1, 2, 3), so that we have 
 
                                        ds2

S = gij dxi dxj                                                                      (2) 
(2) is an invariant known as the first fundamental form [Weatherburn (1957) pp.123-129]. 
The 3-space S must have the same intrinsic geometry as we approach it from the two 
sides V+ and V-  if 
                          gij dxi  dxj   =  aab

+ ya
+,i  yb

+,j d xi dxj =  aab
- ya

-,i  yb
-,j

  d xi d xj                (3) 
 
where  ya,,i  ≡ ∂ya/∂xi  . Hence (3) implies 
 
                                                       gij  =  aab ya,i yb,j                                                        (4) 
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This is known as the matching of the first fundamental form. 
 Let Na be the unit vector normal to the bounding 3-space S given by the equations 
: 
                                            aab ya,i Nb  =  0                                                               (5a) 
 
                                            aab Na Nb = ± 1                                                               (5b) 
 
The positive sign in (5b) corresponds to a space-like and the negative to a time-like 
hyper-surface. Eqn. (5a) is equivalent to three equations. Hence it fixes the ratios of the 
four components N1, N2 , N3 , N4  but not their absolute values. Eqn. (5b) could have fixed 
the absolute values but as it is a quadratic equation, it has two roots corresponding to two 
directions of the normal. One of these corresponds to the future-directed time-line while 
the other to the past-directed one [Goldwirth and Katz (1995), Fayos et al (1996)]. 
Goldwirth and Katz has illustrated this by Fig. 1. They take a two-dimensional example 
of fitting a plane to a cone along the one-dimensional boundary of a circle. The pieces are 
numbered in the first figure. The subsequent figures 1(a)—(d) show all possible                               
combinations of orientations of the unit normals n and  n¯ . 

 
                                                           
                                                          Figure    1.                                     
 
 Another condition to be satisfied on the boundary is that the extrinsic curvature of 
S relative to V+ and V- on the two sides should be the same. It is measured by the rate of 
change of the normal vector [Misner et al (1973) pp. 551-554] (see Fig. 2). 
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                                                            Figure  2 
 

 The extrinsic curvature is given by 
 
                                                  Wij

±  =  ya;ij  aab
± Nb

±                                                           (6) 
where 
                                  ya;ij  =  ya,ij   + Ga

bg yb,i yg,j  -- Gh
ij ya,h                                        (7) 

Here we use a semicolon for a covariant differentiation and a comma for partial 
differentiation. The Christoffel symbols G with Greek indices are formed in 4-space with 
the metric aab

± while those with latin indices are formed in 3-space S with the metric gij . 
 The invariant quantity  
 
                                                ds2

±  =  Wij
± dxi dxj                                                                  (8) 

is called the second fundamental form [Weatherburn (1957)] which should match on the 
two sides.  
 The matching conditions described above are purely geometric conditions and 
Einstein’s field equations have nowhere been used so far. 
 

Examples of Matching 
 

 Santos (1985) used this method to match a general spherically symmetric 
solution representing a shear-free collapsing non-adiabatic fluid having radial heat flow  
with a Vaidya metric across a 3-space S. Later Fayos et al (1992) used the above method 
to study the matching of the most general collapsing sphere with the Vaidya metric.1  
 Mandal and Banerji (1998) matched the Vaidya metric with the Robertson-
Walker metric. We shall give this matching in a little more detail : 
            Let us have a Region I ( 4-space)with the metric : 
 

                                                 
1 Later Fayos et al (1996) considered the general matching of two spherically symmetric space-times and 
the use of Penrose diagrams for the purpose. 
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           ds2
1  =  aab

+ ya
+ yb

+ = {1 – 2m(v)/r1 }dv2 + 2 dv dr1 – r2
1 (d q2 + sin2 q d f2)       (9) 

 
This is the Vaidya metric where m is a function of the null coordinate v alone. And the 
coordinates are :  
 
                                           ya

+  =  ( r1, q, f, v)                                                                (10) 
 
In Region II we have the special Robertson-Walker metric with zero spatial curvature 
where it is filled with a perfect fluid with the equation of state 
 
                                            p =  g r ,  0 ≤ g ≤ 1/3                                                                   (11) 
 
                     ds2

2
  = dt2

2
  --  t2

2n ( dr2
2 + r2

2 d q2  + r2
2 sin2 q df2 )                                     (12) 

where   n  =  2/{3(g + 1)}. Here the coordinates are 
 
                                            ya

-  =  (r2 , q, f, t2 )                                                              (13) 
We want to match the metrics (9) and (12) on the bounding 3-space  S with the eqn. r = 
ƒ(t). The intrinsic metric will be expressed in terms of the local coordinate system : 
 
                                                 xi  =  (q, f, t)                                                  (14) 
t is here the proper time. Hence the intrinsic metric of the bounding space S is 
 
                  dsS

2  =  g ij d xi d xj  =  d t2  -- R2 (t) ( d q2  + sin2 q d f2 )                    (15) 
From the matching of the first fundamental forms : 
 
                                     (d s1

2 )S  = ( ds2
2)S  = d sS 

2                                                        (16) 
we obtain 
 
                                                 t˙22  -- t2

2n r˙22   = 1                                                          (17) 
                                                     r1

 = r2
  t2

n                                                                                                    (18) 
                                    [1 – {2m(v)}/r1] v˙2  + 2r˙2 v˙ = 1                                                (19) 
 
Here a dot over a symbol represents its derivative with respect to t . 
 The unit normal vector Na to S  is given by the eqns. 
 
                                     aab ya,i  Nb  =  0                                                                        (20a) 
                                     aab NaNb  =  -- 1                                                                      (20b) 
 
 
We choose the negative sign on the right of (20b) as the boundary is time-like. Solving 
the above eqns. We obtain two values of Na (as explained earlier) corresponding to the 
two directions of the normal : 
 
                          N1

a   =   ± [ r˙1  + (1 – {2m(v)}/r1) v˙, 0, 0, -- v˙]                                 (21)   
Using eqn.(6) we obtain 
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                         Wq q  =  ± [(1 – {2m(v)}/r1)r1v˙ + r1r˙1] =  Wff /sin2 q                            (22) 
                         Wtt   =  [(--mv˙)/r1

2 + v˙˙/v˙ ]                                                                 (23) 
 
 The unit normal vector to S in terms of coordinates in Region II is given by 
                             
                         N2

a  =  ± [t2
 –n  t˙2 , 0, 0, t2

nr˙2 ]                                                               (24) 
Using  eqn. (6) we obtain again 
 
                        Wqq  = ± (r2 t2

n t˙2 + n r2
2r˙2t2 3n-1 )  =  Wff/sin2 q                                      (25) 

                        Wtt  =  ± ( -- r˙˙2 t˙2 t2
n -- 2nr˙2t˙22t2

n—1 + nr˙23t2
3n--1   + r˙2 t2

n t˙˙2 )          (26) 
 
Matching the second fundamental forms we obtain 
 
       r2 t2

n t˙2  + nr2
2 r˙2 t2 

3n—1  =  ± [(1 – {2m(v)}/r1)r1 v˙ + r1 r˙1 ]                                  (27) 
       r˙˙2 t˙2 t2

n + 2n r˙2 t˙22t2 
n—1 -- nr˙23 t2

3n—1-- r˙2 t2
n t˙˙2  =  ± {(mv˙/r1

2 ) – (v˙˙/v˙)}     (28) 
 

Voids and their evolution 
 

  With the construction of bigger and bigger telescopes, astronomers have been able 
to get a three dimensional view of structures in the universe. Galaxies were found to form 
clusters like stars. The average cluster has a size ~ 5 Mpc. Further studies have revealed 
larger structures with sizes ~ 50 Mpc called super-clusters. In addition to these clusters 
and super-clusters some gaps were found which were called voids whose dimensions may 
be as big as 600 Mpc.[Kirshner et al (1981)]. Later evidence indicated that the voids are 
not completely empty but contain gas [Brosch et al (1984)] or dust [ Lindley (1989)] or 
dark matter or radiation but are deficient in luminous matter. 
 

 
Figure 3 
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Mandal and Banerji (1998) considered a spherically symmetric model of the void 
for mathematical simplicity. The void was supposed to be formed by a central spherical 
region containing matter and radiation whose density is much below the average (Region 
I), surrounded by a spherical shell of pure radiation having the Vaidya metric (Region II). 
The metrics are as follows. In Region I :  
 
dsI

2  =  {1 +  a/(1 + x r1
2 )}2 dt1

2  -- R2 (t1)/(1 + x r1
2)2 { dr1

2 + r1
2 (d q2 + sin2 q d f 2)   (29) 

 
where a and x are constants. The energy momentum tensor is that of a fluid with heat 
flux expressed in the standard form as 
 
              Tm

n  =  (r + p) um un – p dm
n -- qmun -- um qn                               

(30) 
 
where qm represents the heat flux vector orthogonal to the velocity vector um . 
 This is a spherical slice cut out of a special case of a solution found by 
Maiti(1982). 
  In Region II : 
 
dsII

2  =  { 1 – 2m(v)/r2 }d v2 + 2 d v dr2  -- r2
2 (d q2 + sin2 q d f2 )                                  (31) 

This is a spherical shell cut out of the Vaidya solution. The combination of Regions I and 
II  constitutes the void and  is  embedded  in  an   FRW universe  with  flat space  sections   
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                                                             Figure 4. 
 (Region III) (see Fig. 3). 
 In Region III :  
     
            dsIII

2  =  dt3
2  -- t3 

2n {dr3
2 + r3

2( d q2 + sin2 q d f2)}                                            (32) 
 
The space-time is filled with a perfect fluid with the equation of state  p =  gr , 0 ≤g≤ ⅓ 
and  n = 2/{3(g+1)}. When g = 0, n = ⅔ and for g = ⅓ , n = 1/2 .                                     (32a) 
 From the junction conditions the above authors deduce that 
 
                               2m = n2 a0

3 t3
3n--2                                                                          (33) 

 
where a0 is a constant. If n = ⅔ , i.e. g = 0,  m becomes a constant, hence no radiation 
comes from Region II. In such a case the Vaidya metric reduces to that of Schwarzschild 
with the transformation : 
 
                           v = t2  -- ∫ dr2 /(1 – 2m/r2)                                                                   (34) 
 
Mandal and Banerji (1998) further deduced that t2 of the Schwarzschild metric is related 
in this case to t3 of FRW metric in Region III by the equation : 
                       t2  =   ± ∫ dt3/( 1 – 4/9 a0

2 t3
–⅔) 

 
                           =  ± [ t3 + 4/3 a0

2 t3
⅓  + 4/9 a0

3 ln | (3t3
⅓ -- 2a0)/(3t3

⅓ + 2a0)|             (35) 
 
If we want both t2 and t3 to be future-directed we must take the first sign and reject the 
second. The above expression agrees with that found by Dey and Banerji (1991). This 
choice of sign depends on the choice of direction of the normal to the bounding 3-space. 
In this “radiation-free” case ( p = 0, g = 0 ) the co-moving observer finds the bounding 
surface to be static, i.e. he finds the void to be static. In other cases the boundary m in 
eqn. (33) is not constant and so radiation comes out of Region II , which must be present 
at least near the boundary of Regions II and III. We assume that the amount of radiation 
coming out of Region II is small compared to the matter density in III. So after some 
distance the radiation is absorbed or scattered by matter so as to become non-existent. 
Mandal and Banerji (1998) showed that the boundary of the void  satisfies the equation : 
 
                         r3 = u3 =   2[ a0  -- (g/2){3(g + 1)/(3g + 1)} t3

{(3g+1)/3(g+1)}]                             (36) 
 
This means that the void appears to contract to a co-moving observer, a little away from 
the boundary in Region III. 

Although Fayos et al (1991, 1992) showed that a Vaidya metric can be smoothly 
matched with the general FRW universe, it may appear strange as we are accustomed 
with the treatment of the FRW universe in co-moving coordinates where it contains a 
perfect fluid with no radiation. But Tupper (1981) showed that stress-energy tensors of 
quite different matter distributions may have precisely the same components. Suppose 
that  r¯ , p¯  be the density and pressure of the perfect fluid filling the FRW universe when 
we take co-moving coordinates so that the energy-momentum tensor becomes 
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                                Tmn = (r¯ + p¯ ) um un -- p¯ gmn                              
(37) 
 
On the other hand, if the fluid ‘s 4-velocity is vm when the coordinates are not co-moving 
we may have the same components of Tmn as (37) with an imperfect fluid together with a 
null vector lm representing radiation  
                               Tmn = (r + p) vm vn – p gmn – W2 lmln  + Pmn                              (38) 
 
Pmn is a trace-free tensor of anisotropic pressures orthogonal to vm . The values have 
been evaluated by Mandal and Banerji (1998). At least the component v1 is non-zero near 
the boundary unlike u1 and the extra term involving v 1 is compensated for by the 3rd and 
4th terms on the right of (38). 
 Later Ray, Chaudhury and Banerji (2000) generalized the model of the void by 
replacing the FRW universe with flat space sections by a general FRW space-time  with 
non-zero spatial curvature with the metric given by 
 
                  ds2   =  dt2  --  S2 (t)/(1 + kr2 /4)2 [ dr2 + r2 (d q2 + sin2 q d f2 )]                      (39) 
 
They prove that the matching conditions show that the radial coordinate of the boundary 
between the Vaidya  and the FRW space-times is given by 
                 
                  r  = u3 = 2 tan [ a0 – (g/2)  sin-1 S (1 + 3g)/2 ]  for  k  =  + 1                             (40a)          
                            
                             = 2 [ a0  -- (g/2) {3(g + 1)/(3g + 1)}S (1 + 3g)/2 ] for  k = 0                         (40b) 
 
                             =  2 tanh [ a0 – (g/2 ) sinh-1 S (1 + 3g)/2 ]                                             (40c) 
 
Here a0  is a positive constant. Evidently, if  g = 0, (i.e. the pressure vanishes), the void 
remains static, whatever be the value of k in the overall universe. 
 

Discussion 
 

  In a nutshell, this model of the void would go on collapsing while the universe 
expands if it was created in the early universe which was not matter-dominated. This is 
true even if the spatial curvature of the overall universe is non-zero. But the rate of 
collapse depends upon the spatial curvature. The rate is fastest for k = + 1, medium for k 
= 0 and slowest for k = -- 1. In other words, any in-homogeneity produced in the 
otherwise homogeneous early universe tends to be removed. However, if a precursor of 
the void created in the early universe survives till the present matter—dominated epoch 
the collapse of the void stops. The arrow of time is assumed to point towards the future in 
each region.  
 The present day cosmologists believe that a small in-homogeneity present in the  
early universe at the time of decoupling of matter and radiation increased in size as the 
universe expands leading to the formation of structures that we see today. The present 
result goes against this belief unless our result is very much model-dependent. However, 
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we have taken only one inhomogeneous region in the FRW universe. But, in actual 
practice, there are several under-dense as well as over-dense regions. Further, we have 
considered the void (or its precursor) to be spherically symmetric for mathematical 
convenience but a look at  Fig. 3 shows that this is not at all justified. Moreover, we now 
know that matter (including dark matter) is only 30% of the total energy while the 
remaining 70% is called dark energy whose exact nature is still unknown. The dark 
energy is believed to be repulsive producing an accelerated universe at the present epoch. 
Better models of voids and filaments need to be given by theorists to explain our 
observations.   
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