
Introdu
tory CosmologyM. Sami1 Homogeneous and Isotropi
 ModelHomogenity: Means that universe looks the same at ea
h point.Isotropy: Means that universe looks the same in all dire
tions.These are two important properties of spa
e whi
h are independent of ea
h other.But isotropy atea
h point implies homogenity also.Cosmologi
al prin
iple: Universe is homogeneous and isotropi
 at any given 
osmi
 time. The
osmologi
al prin
iple is supported by the observational eviden
e that the universe be
omes smoothat large s
ales. The 
osmologi
al prin
iple presents the idealized pi
ture of the universe. Thedeparture from homogenity and isotropy is extremely important whi
h led to the stru
ture formationin the universe.1.1 Hubble's law
r

0

We examine the motion of matter in a 
oordinate system in whi
hit is at rest at the origin. We now ask for the velo
ity dstribution
onsistent with homgenity and isotropy.Hubbles law:
~v = H(t)~r (1)Velo
ity �eld (1) is isotropi
 at O. Let us verify that (1) holds forany observer situated at a point A, The observer at A is in motionwith respe
t to O.

~r′ = ~r − ~rA.So,
~v′ = ~v − ~vA = H~r −H~rA

~v′ = H(~r − ~rA)

~v′ = H~r′

0

r

rA

A
r’

Therefore, velo
ity distribution (1) is homogeneous and isotropi
.1.2 Lo
al expansionThe distan
e between two arbitrary points 
hanges as
d~rAB(t)

dt
= H(t)~rAB 1



Therefore,
~rAB(t) = ~rAB(t0) exp

(
∫ t

t0

H(t′)dt′
)Remark: The dynami
s will be de
ided by H(t).If H(t) = const., then

~rAB(t) = ~rAB(t0)e
(t−t0)H1.3 Evolution of density

R(t)
M

ρ =
M

4π
3
R3

dρ(t)

dt
= −

3M

[4π
3
R4]

dR

dtBut dR/dt = v = HR. Therefore,
dρ(t)

dt
= −

3M

[4π
3
R3]

H = −3ρH

dρ

dt
= −3ρH (2)(2) 
an also be obtained from 
ontinuity equation

∂ρ

∂t
= −~∇ · (ρ~v)

ρ - fun
tion of time alone:
∂ρ

∂t
= ρH ~∇ · ~r = −3ρH (3)

∂ρ

∂t
=

d

dt
ρHomogeneity and isotropy is a preserved property in time.2 Evolution Equation

R(t)
M

m

The a

eleration of a parti
le with mass m due to the gravitationalfor
e of M is given by:
d2R(t)

dt2
=

−GM

R2(t)

d2R(t)

dt2
=

d

dt
(HR) = H

dR

dt
+R

dH

dt
= H2R +R

dH

dt

dH

dt
= −

GM

R3
−H2 2



dH

dt
= −H2

−
4π

3
Gρ (4)Remark: If H = const, eqn (4) is in
onsistent. Infa
t H = const (with dh

dt
= R̈

R
− H2) wouldimply R̈(t) > 0, whi
h 
annot 
ome from eqn (4).Friedman Equation: Multiply eqn (3) by dR(t)/dt:

dR

dt

(

d2R

dt2

)

= −
GM

R2

dR

dt
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dt

(

dR

dt

)2

=
d

dt

(

GM

R

)

d

dt

[

1

2

(

dR
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)2

−
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R

]

= 0

1
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(

dR

dt

)2

−
GM

R
= A = const (5)

M =
4

3
πρR3Determining the 
onstant A{t0, ρ0 } present epo
h and sele
t a value of R = R0 at t = t0 for the sphere.

A =
1

2

(

dR

dt

)2

t=t0

−
4

3
πGR2

0ρ0

=
1

2
H2

0R
2
0 −

4

3
πGR2

0ρ0

(

dR

dt

)2

=
8πG

3
ρR2

−
8πG

3
R2

0

[

ρ0 −
3H2

0

8πG

] (6)This is 
alled Freidman equation. From 
ontinuity equation
ρ(t) =

ρ0R
3
0

R32.1 General 
hara
ter of the solution of (6)At present, dR
dt

> 0 implies that R was smaller in the past, but 8πG
3
ρR2 was larger, so dR

dt
was largerin the past:

R(t0) = 0,
dR

dt

∣

∣

∣

∣

t=t0

= +∞ t = t0Explanation 3



R ≥ 0 by de�nition, R̈(t) < 0, ρ > 0Hen
e R(t) was smaller and smaller as we go into past deeper and deeper, and dR/dt be
omeslarger and larger. Consequently, there was an epo
h, say t = 0, when
R(t = 0) = R(0) = 0

dR

dt

∣

∣

∣

∣

t=0

= ∞

R(t)

t 0 t0

Criti
al density: The predi
tion of the future depends upon the sign of [ρ0 − 3H0/8πG] or howthe present density 
ompares with the 
riti
al density ρc:
ρc =

3H2
0

8πGWe also de�ned the dimensionless density parameter Ω0:
Ω0 ≡

ρ0
ρ

=
8πGρ0
3H2

02.2 Classi�
ation of the solutionI ρ0 > ρc The se
ond term in eqn (6) is positive. As R in
reases, the �rst term de
reases andeventually be
omes equal to the se
ond term at a parti
ular time. The RHS of eqn (6) thenvanishes and expansion 
eases, and 
ontra
tion begins.II ρ0 < ρc RHS of equation (6) is positive, leading to expansion forever.As t → ∞, R → ∞

dR

dt

∣

∣

∣

∣

t=∞

=

[

8πG

3
R2

0(ρc − ρ)

]1/2III ρ0 = ρc Expansion 
ontinues without bound.2.3 Maximum Age Estimate
ρ > ρ

ρ < ρ

ρ = ρ

o c

o

o c

c

t max

R(t)

t = 0, R = 0. Suppose the expansion rate is 
onstant and given bythe present value of Hubble parameter,
R(t0) ≡ R0 =

(

dR

dt

)

t=0

t0 = H0R0t0

t0 =
1

H0
T0 ≃ h−19.8× 109years

H0 ≃ 100kms−1mpc−1 h ≃ 1− 0.5 t ≃ 9.8× 109h−1years

0.37 < H0t0 < 1.47
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3 Solutions of Evolution Equation
ρ0 = ρc or Ω0 = 1

(

dR

dt

)2

=
8πG

3
ρR2 ρ(t) =

ρ0
R3

R3
0

(

dR

dt

)2

=
8πG

3

ρ0R
3
0

R
dRR1/2 = const.dt

R(t) = R(t = 0)(t/t0)
2/3

⇒ R0

(

t

t0

)2/3

= R(t)

R(t) ∝ t2/3

Ṙ(t) ∝
2

3
t−1/3

⇒
Ṙ(t)

R
=

2

3

1

tTherefore, t0 = 2
3

1
H0

.
ρ(t) =

ρ0R
3
0

R3(t)
=

ρ0R
3
0

R3
0(t/t0)

2
=

3H2
0

8πGt2
t20 =

3H2
0

8πGt2
4

9

1

H2
0

=
1

6πGt2

ρ(t) =
1

6πGt23.1 Pressure 
orre
tions: Relativisti
 e�e
ts
∂ρ

∂t
+ 3H

(

ρ+
P

c2

)

= 0 (7)
R̈

R
=

−4πG

3

(

ρ+
P

c2

) (8)
Ṙ2

2
−

4πG

3
R2ρ = A (9)Consisten
y 
he
k: Di�erentiating (9), we get

ṘR̈−
4πG

3
R2ρ̇−

4πG

3
× 2× ρṘR = 0

Ṙ = HR

ṘR̈ +
4πG

3
R2H

(

ρ+
P

c2

)

−
8πG

3
ρṘR = 0

R̈

R
+

4πG

3

(

ρ+
P

c2

)

−
8πG

3
ρ = 0

R̈

R
=

−4πG

3

(

ρ+
P

c2

)System (7), (8) and (9) are 
onsistent. 5



3.2 Solution of Equations in Case of Radiation DominationEquation of State: Out of the eqs (7), (8) and (9), only two are independtent. Eq. (9) 
an beobtained from (7) and (8). These eqs 
an be solved and ρ(t), R(t) 
an be uniquely determinedprovided the equation of state (= relation between ρ and P ) is given. This relation, in simple 
ases,
an be written as
P = ωρc2, ω =







0 Dust
1
3

Radiation
−1 Cosmological constant

ω = 1
3
, ρ0 = ρc

∂ρ

∂t
+ 3H

(

ρ+
P

c2

)

= 0 ⇒
∂ρ

∂t
+ 4Hρ = 0

ρ(t) = ρ0
R4

0

R4(t)

(

Ṙ

R

)2

=
8πG

3
ρ ⇒ Ṙ(t) ∝

1

R(t)

R(t) = R0

(

t

t0

)1/2

H(t) =
1

2t
⇒ t0 =

1

2H0

ρ(t) =
3

32πG

1

t24 Standard Form of Evolution EquationsComoving Coordinates: These 
oordinates are are 
arried along with the expansion. Sin
e theexpansion is uniform, the relation between the Physi
al and Comoving Coordinates is given by
~r(t) = a(t)~x a(t) → scale factorThe uniformity of expansion is en
oded in the s
ale fa
tor.

(

dR

dt

)2

=
8πG

3
ρR2

−
8πG

3
R2

0[ρ0 − ρc]Put R(t) = a(t)x
(

ȧ

a

)2

=
8πG

3
ρ−

H

x2a26



Let Kc2 = A
x2 or K = A

x2c2
. Dimensionally

[K] =
L2

T 2

1

L2 L2

T 2

= L−2

(

ȧ

a

)2

=
8πG

3
ρ−

Kc2

a2Also, from (8)
ä

a
=

−4πG

3

(

ρ+
3P

c2

)Putting c = 1

∂ρ

∂t
+ 3H(ρ+ P ) = 0

(

ȧ

a

)2

=
8πG

3
ρ−

K

a2

ä

a
=

−4πG

3
(ρ+ 3P )4.1 Thermal HistoryFor K = 0, ρr(t) = 3

32πGt2

ρr(t) = αT 4

T =

(

3

32πGα

)1/4

t−1/2

TK = 1.5× 1010t−1/2
sec

ρr(t) ∝
1

a4
⇒ T (a) = T0

(a0
a

)4.2 De
ouplingDe
oupling takes pla
e at a temperature equal to the binding energy of Hydrogen atom.
3kBTd = 13.6eV

Td =
13.6eV

3kB
≈ 5× 104K (1eV ≃ 104K)However, temperature in reality is mu
h smaller than this

Td ≃ 3000K ⇒
a0
ad

=
3000

T0
≃ 10007



Sin
e TK = 1.5× 1010T−1/2, de
oupling time
td = 1013 sec ≃ 3× 105 yrs.Remark:
Ωr

Ωm
∝

1

a

=
Ω0

r

Ω0
m

1

a
≈

4× 10−5

Ω0
m

1

a

aeq ≃ 2.4× 104Ω0

teq ≃ 2.5× 103Ω
−3/2
0 years5 Cosmologi
al ConstantEinstein introdu
ed the 
osmologi
al 
onstant to make the universe stati
 (later des
ribed by himas his �biggest blunder�).

H2 =
8πG

3
ρ−

K

a2
+

Λ

3

ρΛ =
Λ

8πG
PΛ =

−Λ

8πG

Λ > 0 and ρ: H = 0

a(t) ∝ e
Λ

3
t

ä(t)

a(t)
= −

4πG

3
(ρΛ + 3PΛ) = +

8πG

3
ρΛ

ä > 0 ⇒ a

elerated expansion. In�ation
H2 =

8πG

3
ρ−

K

a2
+

Λ

3

1 = Ωm + ΩΛ −
K

a2H2

Ωm + ΩΛ − 1 =
K

a2H2
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