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Quantum Mechanics: Matrix formulation

Operators as matrices
In quantum mechanics one often deals with systems
which have a discrete, finite dimensional Hilbert space.
In such situations, sometimes it is covenient to use
a different kind of formulation of quantum mechanics.
Let use consider an operator �̂ and an arbitrary com-
plete set of eigenstates {|?8〉}. The operator �̂ can
be represented in this basis by simply multiplying with
a unit operator (denonted by a complete set) on either
side of it:

�̂=

#∑
<=1
|?<〉〈?< |�̂

#∑
==1
|?=〉〈?= |

=

∑
<,=

〈?< |�̂|?=〉|?<〉〈?= |

=

∑
<,=

�<= |?<〉〈?= |, (1)

where �<= = 〈?< |�̂|?=〉. Since the size of the Hilbert
space is # , there are #2 number of terms �<=. It
looks obvious that these elements can be written as a
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matrix

� =

©­­­­«
�11 �12 . . . �1#
�21 �22 . . . �2#
...

...
. . .

...

�#1 �#2 . . . �##

ª®®®®¬
States as matrices

We already know that a state can be written in terms
of basis states

|#〉 =
#∑
==1
〈?= |#〉|?=〉.

The elements 〈?= |#〉 are # in number. The operator
�̂ acting on the state |#〉 can be written as

�̂|#〉=
∑
<,=

�<= |?<〉〈?= |
#∑
:=1
〈?: |#〉|?:〉

=

∑
<,=

�<= 〈?= |#〉|?<〉. (2)

This does look like a square matrix multiplied with a
column matrix. This suggests that the ket state can
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be written as a column matrix:

|#〉 =
©­­­­«
〈?1 |#〉
〈?2 |#〉
...

〈?# |#〉

ª®®®®¬
It is but natural to expect that the bra state will be repre-
sented by a row matrix, but with a complex conjugate:

〈# | =
(
〈# |?1〉 〈# |?2〉 . . . 〈# |?#〉

)
.

The inner product of two states is a number:

〈) |#〉 =
(
〈) |?1〉 〈) |?2〉 . . . 〈) |?#〉

) ©­­­­«
〈?1 |#〉
〈?2 |#〉
...

〈?# |#〉

ª®®®®¬
It can be verified that the above yields just the normal
inner product of quantum mechanics

〈) |#〉 = 〈) |
#∑
==1
|?=〉〈?= | |#〉 =

#∑
==1
〈) |?=〉〈?= |#〉.

From the above analysis it is clear that quantum me-
chanics in finite dimensional Hilbert space can be
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done by representing operators and states as matri-
ces. However, one has to choose a basis for doing so.
The matrix for an operator will look different in different
bases.

Diagonal representation

Let us choose the eigenstates of the operator �̂ as
our basis:

�̂|0=〉 = 
= |0=〉,
where 
= are the eigenvalues of �̂. The matrix ele-
ments of �̂ will now look like:

�<= = 〈0< |�̂|0=〉 = 
=�<= .

This means that the matrix for �̂ is now is a diagonal
matrix with the eigenvalues as the diagonal elements

� =

©­­­­«

1 0 . . . 0
0 
2 . . . 0
...
...
. . .

...

0 0 . . . 
#

ª®®®®¬
.

An eigenstate of �̂, (say) |02〉 will be a column matrix,
with the elements given by 〈0= |02〉. Clearly the 2nd
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element will be 1, and the rest will be zero:

|02〉 =

©­­­­­­«

0
1
0
...

0

ª®®®®®®¬
We started by solving the problem of a paricle in a box,
by writing the time-independent Schrödinger equation

�̂ |#=〉 = �= |#=〉

as a differential equation. In terms of matrices, solving
the time-independent Schrödinger equation of another
system would amount to finding a basis in which the
matrix for �̂ is diagonal. The diagonal elements of the
matrix will be the energy eigenvalues. The way one
would proceed is by choosing a basis one is familiar
with, and then writing �̂ as a matrix in that basis. Once
�<= is generated, it can be treated like any other ma-
trix, and diagonalized using standard methods. The
eigenvalues thus obtained will be the values of energy
of the system. In situations where a problem cannot
be solved analytically, one may look for numerical so-
lution using a computer. The advantage in using a
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computer is that one can deal system with large Hilbert
space, which produce a large-dimensional matrix for
the Hamiltonian. The large matrix can be diagonalized
using state of the art numerical techniques. This is
the approach in solving many problems in condensed
matter physics.

Adjoint of an operator
We know that the adjoint of an operator is given by

〈# |�̂† |)〉 = 〈) |�̂|#〉∗,

for any |#〉, |)〉. We choose a basis {|?=〉}, and write
the adjoint relation for two states of this basis, and find

〈?= |�̂† |?<〉=〈?< |�̂|?=〉∗

�†=<=�
∗
<= (3)

holds for all <, =. However, �†=< and �<= are ele-
ments of the matrices for the operators �̂† and �̂,
respectively. Then eqn. (3) implies that the matrix
for �̂† is obtained by taking a transpose of the matrix
for �̂, and taking complex conjugate of the elements.
That is also the stanndard definition of the Hermitian
adjoint of a matrix.
Matrix formulation of quantummechanicsis particularly
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useful in dealing with the problems related to angular
momenta, as the Hilbert space is finite there.
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