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The Ising Model

One of the most interesting phenomena in the physics
of the solid state is ferromagnetism. In some met-
als, e.g., Fe and Ni, a finite fraction of the spins of
the atoms align spontaneously in the same direction
to give a macroscopic magnetic field. This, however,
happens only when the temperature is lower than a
characteristic temperature known as Curie temper-
ature. Above the Curie temperature the spins are
oriented at random, producing no net magnetic field.
Another feature associated with the is phenomenon
is that as the Curie temperature is approached either
from above, or from below, the specific heat of the
metal approaches infinity.
The Ising model is a crude attempt to simulate the
physics of a ferromagnetic substance. Its main virtue
lies in the fact that the two dimensional Ising model
yield to an exact treatment in statistical mechanics. It
is the only nontrivial example of a phase transition that
can be worked out with mathematical rigour.
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In the Ising model the system considered is an array
of N fixed sites form a periodic lattice which could be
1-, 2- or 3-dimensional. The geometric structure of the
lattice could be anything, cubic, hexagonal or whatever
one may want. Each lattice site has a spin variable
denoted by Si , which is a number that is either +1 or -1.
If one is more inquisitive, this variable could represent
the eigenvalue of the z-component of a spin−1

2 . If
Si � +1, the spin is said to be up, and if it is Si � −1,
the spin is said to be down. A given set of numbers
{Si} specifies a configuration of the whole system.
The energy of the system in the configuration specified
by {Si} is defined to be

E{Si} � −
1
2

∑
i, j

Ji jSiS j − B
N∑

i�1
Si (1)

where Ji j denotes the strength of interaction between
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the i’th and the j’th spin, B denotes an external mag-
netic field, which could be present. The factor of 1/2
is introduced to account for double-counting in un-
restricted sum over i and j (i=3,j=8 and i=8,j=3 both
represent the interaction between the 3rd and 8th spin).
The quantity Ji j is actually the exchange interaction
between the two magnetic atoms. The magnetic inter-
action between the two magnetic atoms is too weak
to give rise to ferromagnetism.
A simpler version of Ising model is generally used,
where all Ji js are assumed to be equal, and each spin
interacts only with its nearest neighbours

E{Si} � −
J
2

∑
<i j>

SiS j − B
N∑

i�1
Si (2)

where < i j > represents a sum over only the nearest-
neigbours, One can easily see that the macroscopic
magnetic moment for the whole system, for a particular
spin configuration, will be given by

M{Si} �
N∑

i�1
Si (3)
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Statistical Mechanics of Ising Model

Our aim is to calculate various macroscopic thermo-
dynamic quantities using statistical mechanics. Statis-
tical mechanics is what connects microscopic physics
to theromdynamics.
The canonical partition function can be written as

Z �

∑
S1 ,S2 ,...SN

exp(−βE{Si}), (4)

where the summation
∑

S1 ,S2 ,...SN denotes sum over
allmicrostates, which happen to be all possible values
all the spins. The canonical density matrix can also
be written easily:

ρ{Si} �
1
Z

exp(−βE{Si}) (5)

The average value of a quantity, say, A{Si} associated
with the Ising system can then be calculated as

〈A〉�
∑

S1 ,S2 ,...SN

ρ{Si}A{Si})

�
1
Z

∑
S1 ,S2 ,...SN

A{Si} exp(−βE{Si}), (6)

Let us use this equation to write some average quanti-
ties of interest. Average energy of the system is given
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by

〈E〉 � 1
Z

∑
S1 ,S2 ,...SN

E{Si} exp(−βE{Si}), (7)

This can be cleverly recast in the following form.

〈E〉�− 1
Z
∂
∂β

∑
S1 ,S2 ,...SN

exp(−βE{Si})

�− 1
Z
∂
∂β

Z

�−
∂ log(Z)
∂β

(8)

Specific heat can then be calculated as

C � − ∂
∂T

∂ log(Z)
∂β

(9)

Average magnetization of the system is given by

〈M〉 � 1
Z

∑
S1 ,S2 ,...SN

M{Si} exp(−βE{Si}), (10)

One look at equation (2) suggests that this can be
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recast into the form:

〈M〉�1
β

1
Z
∂
∂B

∑
S1 ,S2 ,...SN

exp(−βE{Si})

�
1
β

1
Z
∂
∂B

Z

�
1
β

∂ log(Z)
∂B

(11)

Remembering that the Helmholtz free energy is given
by F � −kBT log(Z), the above relation can be written
as

〈M〉 � −∂F
∂B

(12)

Magnetic susceptiblity can then be calculated as

χ �
1
β

∂2 log(Z)
∂B2 (13)

One noticed that the quantity of central interest is
log(Z). So let go about calculating it.

Z �

∑
S1 ,S2 ,...SN

exp ©«β J
2

∑
<i j>

SiS j + βB
N∑

i�1
Si

ª®¬ (14)

Evaluating Z is not easy, because the SiS j termmakes
sure that the sums over different Si and S j cannot be
carried out independently.
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A paradox: breakdown of ergodicity

The way magnetization in a configuration is defined
by (3), if one flips every spin, it is easy to see that the
magnetization will change sign, but its magnitude will
not change. So for every value of M, there is another
configuration which has magnetization −M. Suppose
there is no external field (B � 0). In that case the
expression for energy E, given by (2), tells us that the
energy of the system does not change if all the spins
are flipped. Of course, if you leave out flipping even
one spin, the energy changes. So, for every configu-
ration with a magnetization M and energy E, there is
another configuration which has magnetization −M
but the same energy E. Since the energy of the two
configurations is the same, the probability of the two
configurations, e−βE/Z, is also the same. So when
one calculates the average magnetization using (10),
the term for every M is exactly canceled by another
term with magnetization −M. The net result is that
average magnetization is zero. We know that at higher
temperatures magnetization for all magnetic materials
is zero. However, the above argument is independent
of temperature, and implies that average magnetiza-
tion will be zero at all temperatures! However, we do
know that ferromagnetic materials show spontaneous
magnetization at low enough temperatures. So where
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is the catch?
What actually happens is that at low enough tempera-
tures, when all spins are (say) up, the system cannot
wander off to the configuration where all spins are
down, just by random flipping of a few spins. The
system is trapped in the mode where the spins are
predominently up. So, there are configurations which
the system never attains, or in other words, there are
parts of the phase space which the system never visits.
The system is no longer ergodic! So the time-average
of any quantity may not be the same as ensemble av-
erage. The ensemble average says that the average
magnetization is zero, whereas the time-average of
magnetization is not zero. This indicates a breakdown
of the ergodicity. But ergodic hypothesis is a central
pillar of statistical mechanics. How does one reconcile
the breakdown of ergodicity with using statistical me-
chanics for studying phase transitions? The answer is
that one should tread carefully here, keeping in mind
the possible breakdown of ergodicity. For example, if
we have a nonzero B, we will not run into the prob-
lem of getting zero magnetization at all temperatures.
This paradox teaches us about breakdown of ergodic-
ity which is always associated with a phase transtion.
A phase transition may not always lead to a break-
down of symmetry, but it will still show breakdown of



Tabish Qureshi

egodicity.

Mean Field Theory

In the following we will carry out an approximate treat-
ment of the Ising model. Let us rewrite the energy for
the Ising model in a suggestive form:

E{Si} � −
J
2

∑
i

Si

∑
< j>i

S j − B
N∑

i�1
Si (15)

where we have split the sum over pairs into a sum
over all the i sites and the nearest neigbours of i,
< j >i. The term

∑
< j>i

S j can be thought to be
a local magnetic field, because of the neighbouring
spins, acting on the spin Si . Needless to say that this
local field varies from site to site, because spin states
vary from site to site. It depends on the configuration
of nearest neigbour spins of that particular site.
Now we make an approximation that the local field
acting on all the sites is the same. Mathematically
this can be written as∑

< j>i

S j � γm , (16)

where γ is the number of nearest neigbours of spin
Si and m is the average magnetization per spin of the
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system. It should be emphasized that the quantity m
is yet to be calculated from the relation m � 〈M〉/N.
Using this approximation, the energy of the Isingmodel
now assumes the following form.

E{Si}�−
Jmγ

2

N∑
i�1

Si − B
N∑

i�1
Si

�−(
Jmγ

2 + B)
N∑

i�1
Si (17)

Let us calculate the partition function using this simpler
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form of the energy. Z now assumes the form

Z�

∑
S1 ,S2 ,...SN

exp

(
β(

Jmγ
2 + B)

N∑
i�1

Si

)
�

∑
S1 ,S2 ,...SN

N∏
i�1

exp
(
β(

Jmγ
2 + B)Si

)
�

N∏
i�1

+1∑
Si�−1

eβ(
Jmγ

2 +B)Si

�

N∏
i�1

2 cosh
(
β(

Jmγ
2 + B)

)
�

[
2 cosh

(
β(

Jmγ
2 + B)

)]N

(18)

Therefore, log(Z) is given by

log(Z) � N log(2) + N log
[
cosh

(
β(

Jmγ
2 + B)

)]
.

(19)
Now we are all set to calculate any quantity. Let us
start by evaluating the average magnetization of the
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system

〈M〉�−1
β

∂ log(Z)
∂B

�N tanh
[
β(

Jmγ
2 + B)

]
. (20)

But 〈M〉/N � m, which leads to

m � tanh
[
β(

Jmγ
2 + B)

]
. (21)
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This is a trancendental equation, which is not easy to
solve. We are looking for spontaneous magnetization,
i.e., magnetization without an external magnetic field.
For B � 0 the equation reduced to

m � tanh(β Jmγ/2). (22)
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One can look for a solution by plotting the L.H.S. and
R.H.S. of this equation on the same graph. The points
where the two curves intersect, will be the solutions
of the above equation. One such plot is shown in
the figure. It is clear that for some values of J, γ, β,
a nonzero value of m is a solution. This shows that
Ising model yields spontaneous magnetization even
in the mean-field approximation.
Let us try to find out an analytical expression for m in
some approximation. can have small non-zero value.
Expanding tanh in a series for small argument and for
B � 0, we obtain,

m ≈ β Jmγ/2 − (β Jmγ/2)3/3 (23)

Denoting Tc � Jγ/2k, we can rewrite the above equa-
tion as

m ≈ m
(

Tc

T

)
−

(
Tc

T

)3 m3

3 (24)

One solution of this equation is m � 0, and the other
one is

m�±
√

3
(

T
Tc

) (
1 − T

Tc

)1/2
(25)

where Tc � γ J/2k can now be identified as a critical
temperature. At temperatures close to Tc, we can
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approximate the above relation as

m ≈ ±
√

3
(
1 − T

Tc

)1/2
(26)

This relation implies that at temperature goes below
Tc , the magnetization starts from zero, and grows as
(1−T/Tc)1/2, even in the absence of an external field.
Generally speaking, the order parameter in a phase
transition, close to the transition temperature, goes
as ψ � (1 − T/Tc)β, where β is a critical exponent.
Ising model in mean field theory, yields β � 0.5. Real
experiments on ferromagnetic materials show that β ≈
0.33. So, our simplified model gives a value of β which
is not drastically different from the experimental value.
This shows that the Ising model, despite its simplicity,
captures the essential physics of phase transitions.
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We will now attempt at determining the behavior of
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magnetization m at all temperatures below Tc . Equa-
tion (22) can be written as m � tanh(mTc/T). We
can obtain m by numerically finding the zeros of the
function tanh(mTc/T) − m, for various values of T.
This can be done through a simple computer program
using bracketing and bisection, and the result is dis-
played in the first figure above. Compare this with the
experimental data of three ferromagnets, iron, nickel
and cobalt, shown in the second figure above. Our
mean-field curve qualitatively agrees quite well with
the experimental data.
A better agreement is expected if the Ising model is
solved without approximations, or with a better approx-
imation.

Magnetic susceptibility

Let us now look at the magnetic susceptibility of the
Ising model. To do that we should look at the case
B , 0. Equation (21) can be written as

m � tanh
(

mTc

T
+

B
kT

)
. (27)

Magnetic susceptibility is defined as χ �
∂m
∂B

��
B�0. We

differentiate both side of the above equation with re-
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spect to B

∂m
∂B

�
∂
∂B

tanh
(

mTc

T
+

B
kT

)
�

(
∂m
∂B

Tc

T
+

1
kT

)
1

cosh2
(

mTc
T +

B
kT

) (28)

Putting B � 0 on both sides, we get

χ�

(
χ

Tc

T
+

1
kT

)
1

cosh2
(

mTc
T

) (29)

For T > Tc , without any external field, the magnetiza-
tion m is zero. The above equation then simplifies to
yield

χ �
1
k
· 1

T − Tc
(30)

This is the well-know Curie-Weiss law, which is valid
for temperatures above the transition temperature. For
T < Tc , m has no closed form and hence an analytical
expression for χ cannot be obtained.
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