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Statistical Mechanics: Lecture 6

Entropy in Canonical Ensemble

In microcanonical ensemble, the entropy of the system
was defined very simply in terms of the total number
of microstates Ω, which are all equally probable

S(E) � k log [Ω(E)] (1)

Energy of the system is fixed at E. As all microstates
are equally probable, the probability of one microstate
is 1/Ω. The above expression can be written in terms
of this probability of one microstate

S(E) � −k log
[ 1
Ω(E)

]
(2)

In the canonical ensemble, microstates with different
energy occur with different probability. For that reason,
one may want to rewrite the above equation as an
average over microstates. This will help in extending
this relation to the case of canonical ensemble.

S(E) �
∑

i

1
Ω(E)

(
−k log

[ 1
Ω(E)

])
(3)

Since all terms in the sum in (3) are equal, and there
are exactly Ω terms, it will add to give (2). Defining
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1/Ω to be the probability of a microstate ρi , the above
can be written as

S(E) � −k
∑

i

ρi log ρi (4)

This definition of entropy can now be carried over
to canonical ensemble, in a straightforward manner.
The only difference is that the sum now involves mi-
crostates with all possible energies

S � −k
∑

i

ρi log ρi (5)

where ρi is the probability of the i’th microstate, given
by

ρi �
e−βEi

Z
, (6)

Z is the canonical partition function given by Z �∑
i e−βEi , and Ei is the energy of the system in i’th

microstate. In terms of the classical phase space
variables, the entropy can be written as

S � −k
1
∆

∫
ρ(p , q) log

[
ρ(p , q)

]
dpdq (7)

where ρ(p , q) is the density function in canonical en-
semble, and ∆ is the phase volume corresponding to
one microstate.
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Since for canonical ensemble, ρi has a specific form
(6), we can put it in (5) and get an expression for
entropy in terms of Z.

Helmholtz Free Energy

S�−k
∑

i

ρi log ρi

�−k
∑

i

e−βEi

Z
log

(
e−βEi

Z

)
�−k

∑
i

e−βEi

Z
(
−βEi − log Z

)
�βk

∑
i

e−βEi Ei

Z
+

k
Z

log Z
∑

i

e−βEi

�βk〈E〉 +
k
Z

log(Z)Z

�βk〈E〉 + k log(Z) (8)

where 〈E〉 is the ensemble average of the energy of
the system. The above equation can be rewritten as

〈E〉 − TS � −kT log Z (9)

But from thermodynamics we know that the Hemlholtz
free energy is given by F � U − TS. Here, 〈E〉 is the
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internal energy of the system, what is represented by
U in thermodynamics. Thus we find the expression
for Helmholtz free energy in canonical ensemble to be

F � −kT log Z (10)

Classical Ideal Gas in Canonical Ensemble

Let us study our simplest problem of a classical ideal
gas, which we studied using microcanonical ensemble
earlier, now using canonical ensemble. Energy of the
gas is given by

E �

N∑
i�1

*.
,

p2
xi

2m
+

p2
yi

2m
+

p2
zi

2m
+/
-

(11)
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where the sum over i goes over all N particle. The
partition function can thus be written as

Z�
1
~3N

∫
e−βE

N∏
i�1

dpxi dpyi dpzidxidyi dzi

�
1
~3N

∫
exp


−β

N∑
i�1

*.
,

p2
xi

2m
+

p2
yi

2m
+

p2
zi

2m
+/
-


N∏

i�1
dpxi dpyidpzidxidyidzi

�
1
~3N

∫ N∏
i�1

exp

−β *.

,

p2
xi

2m
+

p2
yi

2m
+

p2
zi

2m
+/
-


dpxidpyidpzi dxi dyidzi

�
1
~3N

N∏
i�1

∫
exp


−β *.

,

p2
xi

2m
+

p2
yi

2m
+

p2
zi

2m
+/
-


dpxidpyidpzi dxi dyidzi (12)

Since the particles are non-interacting and identical,
these N integrals will also be identicial. Integral over
space will just give the volume of the box enclosing the
gas, and momenta will vary from −∞ to +∞. Partition
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function thus looks like

Z�
1
~3N

N∏
i�1

V
∫
∞

−∞

exp

−β

p2
xi

2m


dpxi

∫
∞

−∞

exp

−β

p2
yi

2m


dpyi

∫
∞

−∞

exp

−β

p2
zi

2m


dpzi

(13)

Using the properties of Gaussian integrals, this above
equation simplifies to

Z�
1
~3N

N∏
i�1

V
(
2mπ
β

)3/2

�
1
~3N VN

(
2mπ
β

)3N/2

(14)

Average energy is now given by

〈E〉�−
∂
∂β

N log *
,

1
~3 V

(
2mπ
β

)3/2
+
-

(15)

The above simplifies to give

〈E〉 �
3
2NkT (16)
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Entropy of the ideal gas can now be calculated by
substituting expression for Z from (14) into (8). Doing
that, we get

S�βk〈E〉 + k log(Z)

�βk
3
2NkT + k log *

,
1
~3N VN

(
2mπ
β

)3N/2
+
-

�
3
2Nk + Nk log *

,
V

[
2mπkT
~2

]3/2
+
-

�
3
2Nk + Nk log *

,
V

[
4mπ(3NkT/2)

3N~2

]3/2
+
-

�
3
2Nk + Nk log

(
V

[4mπ〈E〉
3N~2

]3/2)
(17)

This result is identical to the one obtained using mi-
crocanonical ensemble, if one identifies the average
energy 〈E〉 with the fixed energy E in microcanonical
ensemble. For indistinguishable particles, one should
have an additional factor of 1/N! in the partition func-
tion (14). With that addition, the above expression will
lead to the Sackur-Tetrode equation.
Thus, canonical and microcanonical ensemble yield
identical results for the classical ideal gas, as they
should.
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