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Statistical Mechanics: Lecture 7

Grand Canonical Ensemble
The canonical ensemble, which we studied in the previous lectures, is applicable to systems
which are thermally interacting with a heat-bath, but are physically isolated. Now we wish to
study that class of systems which are open in the sense of particles freely moving between
the system and the heat-bath. Physical examples are many, an electron gas for example,
has electrons being absorbed and released by the walls. Same things happens for a photon
gas, where the number of photons is not fixed. To study such systems, we introduce an
ensemble where only the volumes is fixed, and the energy and number of particles can
vary. Such an ensemble is called grand canonical ensemble.
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Again, we consider a system charac-
terized by energy, volume and number
of paticles E,V,N, interacting with a
much much larger heat-bath, character-
ized by EB ,VB ,NB. However the sys-
tem can exchange energy with the heat-
bath through the walls. In addition, the
walls of the system are supposed to be
porous so that particles can also pass
from the system to the heat-bath, and
vice-versa. The heat-bath is assumed
to be so large that any exchange of en-
ergy and number of particles with our
system of interest, will not have any noticeable effect on it. The system of interest, and the
heat-bath, taken together, is assumed to be a closed system such that

E + EB � ET , N + NB � NT (1)

where ET and NT are total energy and number of particles, respectively, of the system and
the heat-bath, taken together, and are supposed to be fixed. Total number of microstates
of the combined system is

Ω �

∑
N

∫
ΩS (E,N)ΩB (EB ,NB)dE (2)

where the integral is a sum over possiblities of various amounts of energy exchanges
between the system and the heat-bath, and the sum over N represents various particle
exchanges between the system and the heat-bath. For example, the term E � 0,N � 0
would correspond to a situation where the system transfers all its energy and particles to
the heat-bath. The total system is closed, and can be treated in microcanonical ensemble.
Now, the number of microstates corresponding to the system having energy E and number
of particles is given by

Ω(E,N)�ΩS (E,N)ΩB (EB ,NB)
�ΩS (E,N)ΩB (ET − E,NT − N) (3)

Microstates of the combined system should have been labelled by E, EB, N and NB, but
because of the contraint (1), E,N can be taken to be the only independent variables.
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We now write ΩB (ET − E,NT − N) in terms of the entropy of the heat-bath, using the
Boltzmann definition of entropy S � k logΩ:

Ω(E)�ΩS (E,N)e log(ΩB (ET−E,NT−N))

�ΩS (E,N)e
1
k k log(ΩB (ET−E,NT−N))

�ΩS (E,N)e
1
k SB (ET−E,NT−N)) (4)

where SB is the entropy of the heat-bath. Since the heat-bath is much much larger than
our system of interest, it is obvious that E � EB , ET and N � NB ,NT . The entropy of the
heat-bath can now be expanded in a Taylor series in E and N:

SB (ET − E,NT − N) � SB (ET ,NT ) + E
∂SB

∂E

�����E�0
+ N

∂SB

∂N

�����N�0
+ . . . (5)

We ignore the second and higher order terms in N, E in the series, assuming E,N to be
small, and plug in this expression in (4)

Ω(E,N)≈ΩS (E,N) exp
[
1
k

SB (ET ,NT ) +
1
k

E
∂SB

∂E
+

1
k

N
∂SB

∂N

]
(6)

But
∂SB

∂E
�
∂EB

∂E
∂SB

∂EB
� −

∂SB

∂EB
� −

1
T
, (7)

and
∂SB

∂N
�
∂NB

∂N
∂SB

∂NB
� −

∂SB

∂NB
�
µ

T
, (8)

where T is the temperature of the heat-bath, and µ its chemical potential.
The number of microstates of the combined system, corresponding to the system having
energy E and N particles, can now be written as

Ω(E,N)�ΩS (E,N) exp
[
1
k

SB (ET ,NT ) −
E

kT
+
µN
kT

]

�ΩS (E,N)eSB (ET ,NT )/k e−(E−µN)/kT (9)

The term eSB (ET ,NT )/k is constant, as far as E and N are concerned. From microcanonical
ensemble we know that all microstates (with same energy) are equally probable. This
holds true here too, but only for the microstates of the system plus heat-bath. If one wants
to concentrate only on the system, as we do because we it is the system we are studying,
things are slightly different. Corresponding to a microstate of the system with energy E and
number of particles N, the heat-bath has eSB (ET ,NT )/k e−(E−µN)/kT microstates. So, two
microstates of the system with different E and N, will have different number of microstates
of the heat-bath associated with them. From the system’s point of view, it will appear as if
microstates of the system with different energies and number of particles, have different
probability of occurance.
Total number of microstates of the combined system can be written as

Ω�

∑
N

∫
ΩS (E,N)eSB (ET ,NT )/k e−(E−µN)/kT dE (10)
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So, the probability of the system having energy E and N particles, should be equal to
the number of microstates corresponding to the system having energy E and N particles,
divided by the total number of microstates

P(E,N)�
ΩS (E,N)eSB (ET ,NT )/k e−(E−µN)/kT∑

N

∫
ΩS (E,N)eSB (ET ,NT )/k e−(E−µN)/kT dE

�
ΩS (E,N)e−E/kT∑

N

∫
ΩS (E)e−(E−µN)/kT dE

�
ΩS (E,N)e−(E−µN)/kT

Z
, (11)

whereZ �
∑

N

∫
ΩS (E)e−(E−µN)/kT dE is called the grand-canonical partition function or

the grand partition function. For classical systems, we define the number of microstates of
a system in terms of accessible phase-space volume,

ΩS (E,N) �
∫

E

dpdq
∆

, (12)

where integral of dpdq represents integral over all positions and momenta of all particles,
over the constant energy surface with energy E, and ∆ is the smallest phase-volume of
one microstate. The probability of the system having energy E and N particles, can now
be written as

P(E,N)��
1
∆

∫
E dpdqe−(E−µN)/kT∑

N
1
∆

∫
dpdqe−(E−µN)/kT

(13)

Notice that the integral in the numerator is over a constant energy surface with fixed energy
E, while that in the denominator is over all phase space.
We can thus define a density function

ρ(p , q ,N) �
e−(E−µN)/kT∑

N
1
∆

∫
dpdqe−(E−µN)/kT

�
e−(E−µN)/kT

Z
, (14)

such that ρ(p , q ,N)dpdq gives the probability of the system to have N particles with
momenta between p and p + dp and positions between q and q + dq. Remember that
integral over p here, represents 6N integrals over the 3 momentum components of N
particles. Thus ρ(p , q ,N) describes the normalized density of microstates (of the system
plus heat-bath) in phase space. The grand partition function is now written as

Z �

∞∑
N�0

1
∆

∫
e−(E−µN)/kT dpdq (15)

In the above expression, eµN/kT does not depend on p , q, and can be brought out of the
integral

Z �

∞∑
N�0

eµN/kT 1
∆

∫
e−E(p ,q ,N)/kT dpdq (16)
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But the term 1
∆

∫
e−E(p ,q ,N)/kT dpdq is just the canonical partition function for N particles.

The grand partition function can thus be represented as a sum over canonical partitions
with different number of particles

Z �

∞∑
N�0

(
eµβ

)N
ZN (17)

The quantity eµβ is called fugacity, and sometimes represented by z.
The thermal average of any quantity A can now be written as

〈A〉 �
∞∑

N�0

1
∆

∫
A(p , q ,N)ρ(p , q ,N)dpdq �

1
Z

∞∑
N�0

1
∆

∫
Ae−(E−µN)/kT dpdq (18)

As in the case of canonical ensemble, it will turn out that various thermodynamic quantities
can be represented in terms of the grand partition function. The energy and number of
particles of the system can now be determined by calculating the corresponding ensemble
averages 〈E〉 and 〈N〉.
If the system consists of indistinguishable particles, the canonical partition function for N par-
ticles, ZN should be represented by 1

N!
1
∆

∫
e−E(p ,q ,N)/kT dpdq instead of 1

∆

∫
e−E(p ,q ,N)/kT dpdq.
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