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Statistical Mechanics: Lecture 9

Quantum Statistical Mechanics

Postulates of Quantum Statistical Mechanics
Till now whatever we studied in statistical mechanics,
was by using classical laws of motion. However, all
systems in nature follow quantum mechanics, which
is the more fundamental theory. In many situations it
is a good approximation to describe even microscopic
classically. For example, large molecules and colloid
particles can be described well using classical laws,
and hence using classical statistical mechanics suf-
fices. However, majority of systems which we want
to describe using statistical mechanics, are inherently
quantum in nature, and classical laws cannot be used
to describe them. For example, a gas of free elec-
trons should be described using quantum mechanics
as things like Pauli’s exclusion principle are important
for them. In the following we will formulate statistical
mechanics for quantum systems.
The state of a quantum system can be described at
any instant of time by its wave function Ψ. In a par-
ticular representation,Ψ will be a function of position
coordinates of all the particles, and time. In another
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representation, it will be a function of momenta of all
the particles, and time. In general it can be just be
represented as a vector in Hilbert space, |Ψ〉. |Ψ〉 can
also be written as a linear combination of eigenfunc-
tions of any Hermitian operator of the Hilbert space.
We will write it in terms of the eigenstates of the Hamil-
tonian of the system Ĥ, the so-called energy eigen-
states, given by Ĥ |Φn〉 � En |Φn〉. The state of the
system can now be written as

|Ψ〉 �

∑
n

cn |Φn〉 (1)

According to quantum mechanics, the expectation
value of any observable, represented by Â, is given
by

〈A〉�
〈Ψ|Â|Ψ〉
〈Ψ|Ψ〉

�

∑
n ,m c∗n cm 〈Φn |Â|Φm〉∑

n ,m c∗ncm 〈Φn |Φm〉

�

∑
n ,m c∗n cm 〈Φn |Â|Φm〉∑

n c∗n cn
(2)

where we have used orthonormality of |Φn〉. The con-
stants cn , cm are in general time-dependent.
Now macroscopic systems can never be considered
isolated systems - they continually interact with the
environment, although extremely weakly. So, the state
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involved should be the state of the system plus envi-
ronment combined. The state will look something like
|Ψ〉 �

∑
n dn |χn〉|Φn〉, where |χn〉 represent certain

states of the environment. Formally we can still rep-
resent the state |Ψ〉 by (1), but the cn should now be
identified with dn |χn〉. However, cn are not constants
now, but involve states of the environment. The ex-
pectation value of an observable can still be given by
(2), provided we identify c∗ncm with d∗n dm 〈χn |χm〉.
The relation (2) gives the expectation value of the
observable at any instant of time. However, when
we measure a thermodynamic system, our measure-
ments are never instantaneous, quite simply because
atoms and molecules move much faster than what our
measuring apparatus can resolve. What we measure
is really an time-averaged value of the observable.
The time over which the average is done, or rather
happens, is much long than typical collision time of
atoms and molecules, but much smaller than the re-
solving time of our apparatus. Thus, the quantity we
actually measure, should be given by

〈A〉 �
〈Ψ|Â|Ψ〉

〈Ψ|Ψ〉
�

∑
n ,m c∗n cm 〈Φn |Â|Φm〉∑

n c∗n cn
, (3)

The term c∗ncm represents a time average of d∗n dm 〈χn |χm〉
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over times much longer than the time-scale of molec-
ular motion, but shorter than the resolution time of the
measuring apparatus. This term might look simple
in appearance, but is extremely difficult to calculate,
as it involves all the states of the environment, and
its interaction with the system. In general, this term
cannot be calculated, and one can only make guesses
about it.
If Â represents a measurable macrosocopic observ-
able of a system in thermal equilibrium, the postulates
of quantum statistical mechanics are actually postu-
lates about the form of c∗ncm . We write the postulates
of quantum statistical mechanics as follows.

Postulate of Equal a Priori Probability

c∗n cn �

{
1 (E < En < E + ∆E)
0 (otherwise) (4)

Simply put, it implies that only those states are allowed
which conform to the fixed energy constraint. And all
such states are equally probable.

Postulate of Random Phases

c∗ncm � 0 (n , m) (5)

In quantum mechanics if |ψ1〉 and |ψ2〉 are two al-
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lowed states, any superposition of them, given by
α1 |ψ1〉 + α2 |ψ2〉, is also an allowed state. This pos-
tulate implies that quantum superposition of any two
energy eigenstates, |Φn〉 and |Φm〉, is not allowed.
This is the effect of the environment on the system,
and it grants a special status to energy eigenstates.
It should be emphasized here that the environment
with which the system is assumed to be interacting
here, is not the heat-bath that we have considered in
the classical canonical ensemble before. This envi-
ronment does not exchange energy with the system,
interaction being extremely weak. Its most important
effect is the killing of quantum superpositions of energy
eigenstates of the system.

Density matrix

All of the preceding discussion can also be reformu-
lated in term of density operator, instead of quantum
states. A quantum system in a state |ψ〉 can be de-
scribed by a density operator given by

ρ̂ � |ψ〉〈ψ |, (6)

provided that |ψ〉 is normalized. For an unnormalized
state, one can write ρ̂ �

|ψ〉〈ψ |
Tr[|ψ〉〈ψ |] , where Tr[. . . ]

represents trace over a complete set of states. The
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expectation value of an observable can then be written
as

〈A〉 � Tr[ρ̂Â] (7)
If one uses the energy eigenstates of the system to
take the trace over states of the system, one gets

〈A〉 �
∑
n ,m

〈Φn |ρ̂ |Φm〉〈Φm |Â|Φn〉 �
∑
n ,m

ρnm 〈Φm |Â|Φn〉

(8)
where ρnm is the called the density matrix. For a pure
state, described by a single wave function, this density
matrix is always non-diagonal - it can be diagonal only
when the system is in one of its energy eigenstates.
Comparing the above equation with (2), we conclude
that the system in (2) can be described by a density
matrix given by

ρnm �
c∗ncm∑
n c∗n cn

. (9)

Furthermore, the postulates of quantum statistical me-
chanics, stated in the preceding discussion, imply that
this density matrix (in the representation of energy
eigenstates) is diagonal. To put it mathematically,

ρnm �
c∗ncn∑
n c∗n cn

δnm (10)
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The density matrix may be non-diagonal if another
set of states, different from the energy eigenstates,
are used to take the trace (trace is invariant under
change of representation). The average value of an
observable can now be written as

〈A〉 �
∑

n

ρnn 〈Φn |Â|Φn〉. (11)

The above relation represents an average of the ob-
servable Â over an ensemble which consists of copies
of the system, in different microstates (quantum states)
|Φ1〉, |Φ2〉, |Φ3〉 etc. The microstate (quantum state)
|Φk〉 occurs with a probability ρkk . Here ρnm is an ex-
ample of a mixed-state density matrix. Such a density
matrix cannot represent a single system in a particular
quantum state. It represents a mixture, or an ensem-
ble of systems in different microstates, occuring with
different probability.

Microcanonical ensemble

With the density matrix formulation discussed above,
we are all set to describe various ensembles in quan-
tum statsitical mechanics. Firstly, the counting of mi-
crostates, which was done by calculating the area in
phase-space in classical statistical mechanics, is done
by counting the quantum states of the system, labelled
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by suitable quantum numbers:

1
N!

1
~3N

∫
dpdq →

∑
n

The density matrix for microcanonical ensemble is
given by

ρnn �
c∗n cn∑
k c∗k ck

(12)

with the condition

c∗n cn �

{
1 (E < En < E + ∆E)
0 (otherwise) (13)

All those c∗n cn are equal to 1 whose En lies between
E and E + ∆E. The rest are zero. So,

∑
k c∗k ck is

just equal to the number of microstates whose energy
eigenvalue lies between E and E +∆E, let us call itΩ.
The microcanonical density matrix can then be written
as

ρnn �

{ 1
Ω

(E < En < E + ∆E)
0 (otherwise) (14)

Canonical ensemble

Canonical ensemble can be formulated exactly as it
was done in classical statisitical mechanics, by having



Tabish Qureshi

a system and a much bigger heat-bath. Since none
of the arguments used in our earlier formulation, was
specific to the classical nature of the system, the result
can be directly adapted here. The canonical density
matrix can be written as

ρnn �
e−βEn

Z
, Z �

∑
n

e−βEn (15)

where Z is the canonical partition function. Off-diagonal
elements of the density matrix are zero. Ensemble
average of an observable can be written as

〈A〉 �
1
Z

∑
n

e−βEn 〈Φn |Â|Φn〉 (16)

where |Φn〉 are the eigenstates of the Hamiltonian of
the system.

Grand canonical ensemble

The density matrix in the grand canonical ensemble
can be written, in general, as

ρii �
e−β(Ei−µNi )

Z
, Z �

∑
i

e−β(Ei−µNi ) (17)
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where µ is the chemical potential, and Z the grand
partition function. How the microstates of the system
are defined, may depend on the specific problem at
hand. We will look at it in more detail when studying
the quantum statistics of ideal gas of identical parti-
cles.
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