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Statistical Mechanics: Lecture 10

Ideal Gas of Quantum Particles

We now come to a very important topic in statistical
mechanics, properties of an ideal gas of identical par-
ticles. We have already studied ideal gas in classi-
cal microcanonical and canonical ensembles. The
indistinguishability of identical particles in quantum
mechanics is of a very fundamental nature, and thus
has strong bearing on the properties of gases.
In particular we will be interested in the case where
the system can exchange particles with a heat-bath.
Free electron gas in metals and photon gas in a cavity
are two examples where number of particles of the
system is not fixed. So, the system is described using
the grand canonical ensemble.

Grand canonical ensemble
The density matrix in the grand canonical ensemble
can be written, in general, as

ρii �
e−β(Ei−µNi )

Z
, Z �

∑
i

e−β(Ei−µNi ) (1)

where µ is the chemical potential, and Z the grand
partition function. In the sum, index i denotes the
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microstates of the system, and Ei and Ni , the energy
and number of particles in the i’th microstate. Now, as
the particles are assumed to be non-interacting, each
particle is governed by an identical Hamiltonian, say
Hi , with the eigenvalues denoted by εn . The energy-
levels of each particle are also the same - we will call
them single-particle energy levels. For example, many
particles can have a particular energy, say, εk .
One way of summing over the number of microstates
of the gas, can be to take each particle one by one,
and sum over all its possible energy eigenstates. But,
in doing that we will be tacitly giving them identity,
because two particles exchanging their state, does
not give us a new quantum state, or a new microstate.
Another way of counting could be to realize that if
we know the occupancy of each single-particle state,
we have specified the particular microstate. For truly
identical particles, it is not important which particle is
occupying which energy-level. The only thing impor-
tant is how many particles are occupying a particular
energy level. Thus, if we denote the occupancy of
single particle states ε1, ε2, ε3, . . . by n1, n2, n3, . . . ,
a set of values of n1, n2, n3, . . . specifies a particular
microstate. Summing over microstates would mean
summing over all possible values of n1, n2, n3, . . . etc.
The energy and number particles of the system, in a
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particular microstate, can be written as

E �

∑
j

n jε j , N �

∑
j

n j (2)

The single particle energies ε j depend on the partic-
ular problem at hand. For example, for an ideal gas
of particles in a box (in 1-dimension), ε j will be

j2h2

8mL2 .
Or if all the particles are trapped by a harmonic oscil-
lator potential, ε j will be given by the ( j + 1/2)~ω (in
1-dimension).
The grand partition function can now be written as

Z�

∑
n1

∑
n2

∑
n3

. . . exp *.
,
−β



∑
j

n jε j − µ
∑

j

n j



+/
-

�

∑
n1

∑
n2

∑
n3

. . . exp *.
,
−β

∑
j

n j (ε j − µ)+/
-

�

∑
n1

∑
n2

∑
n3

· · ·

∏
j

exp
(
−βn j (ε j − µ)

)
�

∑
n1

e−βn1(ε1−µ)
∑
n2

e−βn2(ε2−µ)
· · ·

∑
nk

e−βnk (εk−µ) . . .(3)

Let us suppose we want to calculate the average oc-
cupancy of a particular energy-state εk . To do that we
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should multiply εk by the density matrix, and sum over
all the microstates. That will yield

〈nk〉�
∑
n1

∑
n2

. . . nk exp *.
,
−β



∑
j

n jε j − µ
∑

j

n j



+/
-

�
1
Z

∑
n1

∑
n2

∑
n3

. . . nk exp *.
,
−β

∑
j

n j (ε j − µ)+/
-

�
1
Z

∑
n1

∑
n2

∑
n3

. . . nk

∏
j

exp
(
−βn j (ε j − µ)

)
�

1
Z

∑
n1

e−βn1(ε1−µ)
∑
n2

e−βn2(ε2−µ) . . .∑
nk

nk e−βnk (εk−µ)
· · ·

∑
ni

e−βni (εi−µ) . . . (4)

In the above equation, the numerator and the denomi-
nator (given by (3)) have most terms common. Each
sum in the numerator has a corresponding sum in
the denominator, except the sum over nk , for which
the numerator and the denominator terms are differ-
ent. Consequently all the sums from the numerator
and denominator cancel out, except the sum over nk ,
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giving

〈nk〉 �

∑
nk nk e−βnk (εk−µ)∑

nk e−βnk (εk−µ) (5)

To proceed further, we should know what are the
allowed occupancies of the single-particle energy-
eigenstates. We know that in quantum mechanics,
there are two kinds of particles, Fermions in which
occupancy is only 0 or 1, and Bosons in which the
occupancy can vary from 0 to∞.

Bosons (n=0,1,2,3...)
For fermions, the average occupancy of the k’th energy-
state is given by

〈nk〉 �

∑
∞

nk�0 nk e−βnk (εk−µ)∑
∞

nk�0 e−βnk (εk−µ) (6)

The denominator is geometric progression, and gives
(1 − e−β(εk−µ))−1. The numerator can be calculated
by taking the first derivative of a geometric series, and
yields

e−β(εk−µ)

(1 − e−β(εk−µ))2

So, the average occupancy of the k’th energy-state is

〈nk〉 �
e−β(εk−µ)

1 − e−β(εk−µ) (7)
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or

〈nk〉 �
1

eβ(εk−µ) − 1
(8)

The above formula describes the average occupancy
of single-particle energy-states, for particles following
Bose-Einstein statistics.

Fermions (n=0,1)
For fermions, the average occupancy of the k’th energy-
state is given by

〈nk〉 �

∑1
nk�0 nk e−βnk (εk−µ)∑1

nk�0 e−βnk (εk−µ)
�

e−βnk (εk−µ)

1 + e−βnk (εk−µ) (9)

or

〈nk〉 �
1

eβ(εk−µ) + 1
(10)

The above formula describes the average occupancy
of single-particle energy-states, for particles following
Fermi-Dirac statistics.
Total number of particles in the system is simply given
by

〈N〉 �
∑

k

〈nk〉
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which, for the two cases, takes the following form

〈N〉 �



∑
k

1
eβ(εk−µ)

−1 (Bose-Einstein)∑
k

1
eβ(εk−µ)

+1 (Fermi-Dirac)

Finally, we also would like to evaluate the grand parti-
tion functionZ, given by (3). The sums can now be
carried out to yield

Z �




∏
j

1
1−e−β(ε j−µ) (Bose-Einstein)

∏
j

(
1 + e−β(ε j−µ)

)
(Fermi-Dirac)

From (3) one can see that average occupancy of a
energy-state could also have been calculated by the
following relation:

〈nk〉 � −
1
β

∂ logZ
∂εk

. (11)
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