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Quantum Mechanics: Particle in a box

Energy of a particle in a box
Consider a particle of mass <, which is trapped inside
a one-dimensional box of length !. Inside the box, the
particle is free, but the two walls of the box are rigid,
and the box can neither penetrate them, nor go out of
the box. Thus the potential experienced by the particle
is zero inside the box and infinite at the two walls and
beyond. The Hamiltonian is given by

�̂ =
?̂2

2< ++(Ĝ), (1)

which can be written in the position representation as

�̂ =
−ℏ2

2<
32

3G2 ++(G), +(G) =
{
0 0 < G < !

∞ G ≥ !, G ≤ 0(2)

Notice that since there is only one variable G, we use
total derivatives instead of partial derivatives. The
time-independent Schrödinger equation can be written
as

−ℏ2

2<
32#(G)
3G2 ++(G)#(G) = �#(G). (3)
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This is a 2nd order differential equation, and can be
easily solved inside the box, because the potential en-
ergy term is zero there. Inside the box the Schrd̈inger
equation is

32#(G)
3G2 + 2<�

ℏ2 #(G) = 0,

which may be written as(
3

3G
+ 8
√

2<�
ℏ

) (
3

3G
− 8
√

2<�
ℏ

)
#(G) = 0.

The solution of the equation
(
3
3G − 8

√
2<�
ℏ

)
#(G) = 0

will also be a solution of the above equation. We could
have also written the above equation as(

3

3G
− 8
√

2<�
ℏ

) (
3

3G
+ 8
√

2<�
ℏ

)
#(G) = 0.

In that case, the solution of the equation
(
3
3G + 8

√
2<�
ℏ

)
#(G) =

0 will also be a solution of the above equation. A sec-
ond order equation can have only two independent
solutions. These two solutions can easily be gotten
as

#1(G) = 4 8:G , #2(G) = 4−8:G ,
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where : =
√

2<�/ℏ. The general solition will be a
linear combination of these two solutions, namely

#(G) = 214
8:G + 224

−8:G ,

where 21, 22 are undetermined constants. We have
gotten the eigenfunction, but we still don’t have the
energy of the particle. So, what is missing? We have
solved the Schrödinger equation inside the box, but
have left out the boundary, and the region of space
outside the box. Instead of putting in infinite potential,
which can potentially create problems, we can sim-
ply use the physical condition that the particle cannot
penetrate the boundary, and thus the probability of
finding it inside the walls should be zero. From Born’s
interpretation of the wave-function we have learnt that
the |#(G)|23G is the probability of finding the parti-
cle between G and G + 3G. The probability density of
finding the particle at a position G is |#(G)|2. Since par-
ticle cannot penetrate the walls, we have, |#(0)|2 = 0
and |#(!)|2 = 0. This in turn means #(0) = 0 and
#(!) = 0. From the first condition we get 22 = −21,
which implies

#(G) = 2821 sin(:G).
The second condition yields

#(!) = 2821 sin(:!) = 0,
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which means :! = =�, = = 1, 2, 3 . . . . We cannot
have = = 0 because that will make : zero, and the
wave-function zero everywhere. The wave-function
cannot be zero everywhere, because that would imply
that the probability of finding the particle anywhere is
zero, i.e., the particle does not exist. Thus

: =
=�
!
, = = 1, 2, 3 . . .

and there are many eigenfunctions corresponding to
those, which we label by =

#=(G) = 2821 sin(=�G/!).

Recalling the relation of : to energy, we get
√

2<�=
ℏ

= =�

or
�= =

=2ℎ2

8<!2 , = = 1, 2, 3 . . .

We arrive at a very interesting result which says that
the particle which is trapped inside a box, cannot just
take any value of energy. There are only fixed, quan-
tized values it can take. The energy of the particle
is quantized. This is something that never happens
in classical mechanics. We shall see later that this
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quantization of energy is not a special case here, but
happens whenver a particle is confined to a small
region.

Normalization of the eigenfunctions
Since |#(G)|23G is the probability of finding the parti-
cle in a small region around G, if we sum it over all G,
it should give us the probability of finding the particle
in all of space. Since the particle does exist, the prob-
ability of finding it anywhere in all of space should be
1: ∫ ∞

−∞
#∗(G)#(G)3G = 1. (4)

This is called the normalization condition, and must be
satisfied by all wave-functions representing a physical
system. Using the normalization of all eigenfunctions
#=(G), we can find the unknown constant 21, and get
the final normalized eigenfunctions as

#=(G) =
√

2
! sin(=�G/!), = = 1, 2, 3 . . . (5)

and we have ∫ ∞

−∞
#∗=(G)#=(G)3G = 1

for all #=(G).
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Orthogonality of eigenfunctions
Using the expression for the eigenfunctions (5), sup-
pose we evaluate

∫ ∞
−∞#

∗
<(G)#=(G)3G where < ≠ =,

what do we get? We find∫ ∞

−∞
#∗<(G)#=(G)3G = 0.

So, we have a lot of eigenfunctions

#1, #2, #3, #4, #5, #6, . . .

If we multiply them to their own complex conjuge, and
integrate, we get 1. If we multiply them to the complex
conjuge of a different eigenstate, and integrate, we
get 0. There is a close analogy with the unit vectors
in the catesian coordinate system

8̂ , 9̂ , :̂ .

We know that 8̂ · 8̂ = 9̂ · 9̂ = :̂ · :̂ = 1, which means
they are unit vectors. But 8̂ · 9̂ = 9̂ · :̂ = :̂ · 8̂ = 0, which
means they are orthogonal or perpendicular to each
other. So it appears that #1,#2,#3, . . . are like unit
vectors in some abstract space, and are orthogonal
to each other. The 3 unit vectors 8̂ , 9̂ , :̂ describe a
3-dimensional space. Similarly, the infinite number of
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eigenfunctions #1,#2,#3, . . . can be thought of as
describing an infinite-dimensional space. This space
is called the Hilbert space.
We know that any arbitrary vector in 3-dimensional
space, can be represented in terms of the unit vectors
8̂ , 9̂ , :̂

®� = 01 8̂ + 02 9̂ + 03 :̂ ,

where 01, 02, 03 are certain constants, specific to the
vector ®�. Exactly in the same way, any wave-function
of this particle in the box can represented in terms of
the eigenfunctions of Hamiltonian #1,#2,#3, . . .

)(G) = 01#1(G) + 02#2(G) + 03#3(G) + . . . ,

where 08 are certain constants, specific to the wave-
function )(G).
Onemight think that this orthogonality of the eigenfunc-
tions of the Hamiltionian may be because of the kind of
Hamiltonian or something else. However, we shall see
later that this is a generic property - eigenfunctions of
all Hermitian operators are mutually orthogonal.
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