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Quantum Mechanics: Measurement in QM

Measurement in Quantum Mechanics
Quantum mechanics is a tremendously successful theory. Despite that, measurement is
an aspect of quantum mechanics, which is still poorly understood. In classical mechanics
a measurement implies that one extracts some information about the state the system
is already in. For example, we may take a picture of a moving particle, which helps us
in determining the exact position of the particle at that instant of time. It is assumed that
the act of measurement has negligible effect on the state of the particle. Afterall, how
much effect can taking a photograph have on the position or momentum of the particle? In
the worst case, even if the act of measurement strongly disturbs the state of the system,
the information is still obtained about the state of the system before it was disturbed.
Strangely, in quantum mechanics none of this holds! Firstly, for a quantum system, any
act of measurement completely changes its state, and the change is completely random.
Secondly, the result of a single quantum measurement does not give any information about
the previously existing state of the system.
Measurements in quantum mechanics work as follows. Let the system be in an initial state
|#〉, and suppose that we are interested in measuring an observable �̂. The eigenstates
of the observable �̂ are given by

�̂|0=〉 = = |0=〉.

The state |#〉 of the system can be represented in terms of the states {|0=〉}:

|#〉 =
∑
=

2= |0=〉,

where 2= are certain constants. A common misconception is that a measurement involves
applying the operator (�̂ in the present case) on the state of the system: �̂|#〉. This is not
correct. The dynamics of the process of measurement is not understood till now. It is still
considered an unsolved problem. What we do know is that the process of measurement
results in one of the eigenvalues of �̂. Because of the measurement, the state of the
system changes to the eigenstate of �̂ corresponding to the eigenvalue which appeared.
This is the third postulate quantum mechanics. Another way of stating it is that initially the
system is in a superposition of various eigenstates of �̂ (|#〉 = ∑

= 2= |0=〉), and the act of
measurement collapses the state to one of those eigenstates.
Notice that the result one gets depends on what one probes, and the state of the system
changes to a state depending on what is being probed. It does not matter what the original
state was. So, the measurement yields no information about the initial state of the system.
To add to the strangeness of it, which eigenvalue of �̂ appears in a measurement, is
completely random. If one repeats the same measurement by preparing the system again
in the same state |#〉, a different eigenvalue of �̂ may result. So, every measurement of
�̂, carried out on |#〉, yields a different eigenvalue. Although the process is completely
random, all eigenvalues are not equally likey to occur. The probability of eigenvalue :
appearing, as a result of measurent, has a probability equal to |2: |2. We have previously
learnt that

2: = 〈0: |#〉.
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So, the probability %: of the eigenvalue 0 occuring is

%: = |〈0: |#〉|2.

One the other hand, if one were to choose a different observable �̂ for measurement, a
similar scenario would occur. If the eigenstate of �̂ are given by

�̂|1=〉 = �= |1=〉,

the state |#〉 can be represented as

|#〉 =
∑
=

3= |1=〉,

where 3= = 〈1= |#〉 are constants. The measurement will result in a random eigenvalue of
�̂, (say) �: , and the state of the system will change to |1:〉. In repeated measurements, on
the original state |#〉, eigenvalue �: is obtained with a probability |〈1= |#〉|2.
There is one situation in which the state of the system does not change in the process of
measurement. That is when the initial state of the system is an eigenstate of the observable
being measured. As an example, if the state of the system was |0<〉, the measurement will
yield the eigenvalue <, and the state of the system will continue to be |0<〉. For a given
initial state, if one could choose an operator to measure, whose one eigenstate is that
initial state, one can perform a measurement without disturbing the system. For example,
if a particle is in an eigenstate of momentum, making a momentum measurement will not
disturb the state of the particle. However, if the initial state is unknown, there is no way of
choosing such an operator.

Repeated measurements

Suppose the initial state of the system is |#〉 and one measured the observable �̂ and
got the value : , what would happen if one measures �̂ again? Here one is not starting
from the initial state |#〉 again, but from the state obtained after the first measurement. It is
easy to see after the first measurement the state of the system will be |0:〉, and so another
measurement of �̂ will not change the state, as it is already an eigenstate of �̂. So, the
second measurement will also yield : , and so will all subsequent measurements. But
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suppose after the first measurement of �̂, one measures the observable �̂, and gets a
value � 9, what if �̂ is measured again? Will one still get :? The answer is no, because
after measuring �̂, the state changes to |1 9〉, which is not and eigenstate of �̂. Measuring
�̂ on the system in the state |1 9〉 will yield any random eigenvalue of �̂, not necessarily : .
That is why such observables are called incompatible observables. Measurement of one,
interferes with the measurement of the other.
However, if two observables commute, and all their eigenstates are common eigenstates
of both, then measurement of one will not affect the measurement result of the other. In
this case they are called compatible observables.

Expectation value
Now we recognize the eigenvalues of an operator as the values which appear when one
measures the observable addociated with the operator. But what about the expectation
value? Does it have any meaning in terms of measurements? If the state of the system is
|#〉, the expectation value of the observable �̂ is given by

〈�̂〉 = 〈# |�̂|#〉.

Remembering that |#〉 = ∑
= 2= |0=〉, we can rewrite the above as

〈�̂〉=
∑
=,<

〈0< |2∗<�̂2= |0=〉

=

∑
=,<

2∗<2= 〈0< |= |0=〉 =
∑
=,<

2∗<2==�=<

=

∑
=

|2= |2= . (1)

But |2= |2 is the probability of getting the eigenvalue =. So the above expression is
essentially 〈�̂〉 = ∑

= %==, which is just the definition of the weighted average of the
eigenvalues. The expectation value of an observable can then be interpreted as the average
of the measured value of the observable over many measurements of �̂, in the state |#〉.

Meaning of inner-product in terms of measurements
Now that we understand how measurements work in quantum mechanics, we can use the
concept to understand the meaning of an inner product, which we have been treating as
only a mathematical definition. We have seen that if the state of a system is |#〉, and one
measures an observable �̂, the probability of getting a particular eigenstate |0:〉 of �̂ is
|〈0: |#〉|2. The quantity 〈0: |#〉 is the the probability amplitude of getting |0:〉.
This means that an arbitrary inner product 〈) |#〉 can be interpreted as the probability
amplitude of finding the system in the state |)〉, given that it was initially in the state |#〉.
This, of course, assumes that a measurement of an observable is made, which |)〉 is an
eigenstate of.
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