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Quantum Mechanics: General uncertainty
relation

Uncertainty in observables
We all start out by learning about the Heisenberg un-
certainty relation between position and momentum

ΔGΔ? ≥ ℏ2 ,

where ΔG,Δ? is the uncertainty in position and mo-
mentum, respectively. We grew up hearing, the more
precisely you try to measure position, the more you
disturb the momentum, and vice-versa. One gets a
feeling that it has something to do with the process of
measurement. In the following we will learn that this is
not really so. We know that in quantum mechanics all
observable cannot have a precise value (eigenvalue)
at the same time. That is the origin of the uncertainty.
In other words, it doesn’t have to do with the process of
measurement, the structure of quantum mechanics is
such that there is a limit to the preciseness with which
the value of an observable can be defined, given a
particular state.
We know that for an observable �̂, its value is precisely
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defined if the system is in one of the eigenstates of
�̂. For example, if the state is |0:〉, such that �̂|0:〉 =
: |0:〉, the value of the observable is precisely : .
There is no uncertainty in that. However, if the state
is |#〉, which is not an eigenstate of �̂, how does one
define the value of �̂? We have learnt that in such a
situation one can only talk of the expection value of
the observable

〈�̂〉 = 〈# |�̂|#〉.
We learnt that the expection value can be understood
as an average value, average over many measure-
ments. In statstics, when there is a statistical variable,
we talk of its average. But to know how far it can
deviate from the average, we talk of variance or stan-
dard deviation. In quantum mechanics too, we want
to know how much the value of an observable deviate
from its expectation value. A measure like standard
deviation is what contitutes the uncertainty. We define
the uncertainty exactly the way standard deviation is
defined:

Δ� ≡
√
〈(�̂ − 〈�̂〉)2〉,

where the angular brackets denote expectation value.
For another observable �̂, the uncertainty is given by

Δ� ≡
√
〈(�̂ − 〈�̂〉)2〉.
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As the expectation value depends on the state of the
system, so does uncertainty. So the uncertainty of
an observable could be more or less, depending on
the state of the system. Needless to say that since
we talking about observables, both the operators are
Hermitian.
For calculational convenience, we define modified op-
erators as

�̂′ = �̂ − 〈�̂〉, �̂′ = �̂ − 〈�̂〉.

There operators acting on the state |#〉, modify it as

|)1〉 = �̂′|#〉, |)2〉 = �̂′|#〉.

Now, for any two (unnormalized) states |)1〉, |)2〉, the
Schwarz inequality states that

〈)1 |)1〉〈)2 |)2〉 ≥ |〈)1 |)2〉|2,

so it should hold for our specifically defined |)1〉, |)2〉
too. We notice that

〈)1 |)1〉 = 〈# |�̂′2 |#〉 = 〈# |(�̂ − 〈�̂)2 |#〉 = Δ�2,

〈)2 |)2〉 = 〈# |�̂′2 |#〉 = 〈# |(�̂ − 〈�̂)2 |#〉 = Δ�2.

Thus the Schwarz inequality assumes the form

Δ�2Δ�2 ≥ |〈# |�̂′�̂′|#〉|2
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We can rewrite �̂′�̂′ as

�̂′�̂′ = 1
2[�̂
′, �̂′] + 1

2{�̂
′, �̂′},

where { , } represents the anticommutator. The Schwarz
inequality is then

Δ�2Δ�2 ≥ 1
4 |〈# |[�̂

′, �̂′]|#〉 + 〈# |{�̂′, �̂′}|#〉|2.

Now we can use an interesting property of commutator
and anticommutator. An anticommutator is a Hermi-
tian operator, and so its expectation value is always
real. A commutator is an anti-Hermitian operator, and
so its expectation value is always purely imaginary.
So, on the RHS we have the absolute value of the
sum of a real and imaginary number. We know that

|21 + 822 |2 = 22
1 + 22

2 ,

which leads us to

Δ�2Δ�2 ≥ 1
4 |〈# |[�̂

′, �̂′]|#〉|2 + 1
4 |〈# |{�̂

′, �̂′}|#〉|2.

The LHS is ≥ the sum of two terms on the RHS, so
obviously it will also be ≥ one of those terms. We dis-
card the anticommutator term, and write the inequality
as

Δ�2Δ�2 ≥ 1
4 |〈# |[�̂

′, �̂′]|#〉|2.



Tabish Qureshi

Now [�̂′, �̂′] = [�̂, �̂], which then simplifies the above
to

Δ�2Δ�2 ≥ 1
4 |〈# |[�̂, �̂]|#〉|

2 .

Taking square root of both sides, we get

Δ�Δ� ≥ 1
2 |〈# |[�̂, �̂]|#〉| . (1)

This is our general uncertainty relation between any
two observables. It can be verified that for Ĝ and ?̂, it
gives

ΔGΔ? ≥ ℏ
2 .

It is noteworthy that if two operators %̂, &̂ commute,
then

Δ%Δ& ≥ 0,

which implies that there exist states in which the uncer-
tainties of both %̂ and &̂ are zero. Those are precisely
the common eigenstates of %̂ and &̂, which exist since
they are commuting operators.

Limitations of the general uncertainty rela-
tion

The general uncertainty relation (1) is at the very core
of quantum mechanics. The derivation shows that it
cannot be violated. It is just a result of the properties of
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states and operators. However, it suffers from some
limitations which we will discuss here. The idea of
the uncertainty relation is that if the uncertainty of
one observable is known, the relation should provide
a bound on the uncertainty of the other observable.
For most cases the general uncertainty relation does
the job. However, consider a state such that it is an
eigenstate of the observable �̂. In this case Δ� = 0.
The LHS of (1) becomes zero, and there is no way to
estimate the bound on Δ�.
Another problem arises in the situation where [�̂, �̂] =
8�̂, and the state is such that 〈�̂〉 = 0. This can hap-
pen in very normal cases like that of angular momen-
tum operators !̂G , !̂H. In such a case the relation (1)
reduces to

Δ�Δ� ≥ 0.

Now,Δ�Δ� being non-negativemeasures, there prod-
uct is anyway bounded from below by zero. So the
uncertainty relation gives a trivial bound in this case.
It can be shown that there are states where 〈�̂〉 = 0,
but neither Δ�, nor Δ� is zero. So there should exist
bounds but the general uncertainty relation is unable
to provide one.
To address these problems, a new uncertainty relation
was formulated by Lorenzo Maccone and Arun Pati in
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2014. It is known as the Maccone–Pati uncertainty
relation, and has the following form:

Δ�2 + Δ�2 ≥ 8〈# |[�̂, �̂]|#〉 + |〈# |�̂ + 8�̂|#⊥〉|2,

where |#⊥〉 is an arbitrary state orthogonal to the sys-
tem state |#〉, and the sign should be chosen so that
8〈[�̂, �̂]〉 (a real quantity) is positive.
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