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Quantum Mechanics: The Spin

Discovery of the spin
Let us have another look at the Stern-Gerlach exper-
iment performed in 1922. A beam of silver atoms,
which are paramagnetic, was passed through an inho-
mogeneous magnetic field. Suppose each atom has
an inherent magnetic moment � , then the force on it
in an inhomogeneous magnetic field is given by

®� = ∇(®� · �,

Let us assume that �I � �G , �H , so that � ·� ≈ �I�I .
In this situation, the force will be primarily along the
z-axis,

®� = �I
%�I
%I

:̂,

where :̂ is a unit vector along z-axis. One can see
that the deflection of the beam should be proportional
to the z-component of the magnetic moment. The
magnetic moment is related to the angular momentum
by the following relation

®� = � ®(,
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where � is called the gyromagnetic ratio. So the quan-
tum observable corresponding to the z-component of
the magnetic moment is �̂I = �(̂I. Now we know
the eigenvalues of (̂I are ℏ<, where < = −; ,−; +
1, ..., ; − 1, ;. For the lowest non-zero value of angular
momentum, i.e. ; = 1, there are three eigenvalues of
!I, given by ℏ, 0,−ℏ.
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A schematic diagram of the Stern-Gerlach experiment.

Corresponding to these, there are three possible val-
ues of the magnetic moment �I = �ℏ, 0,−�ℏ. These
leads to three discrete values of force � = �ℏ%�I%I , 0,−�ℏ

%�I
%I .

From quantum mechanics one expects that if the sil-
ver atoms are in the ground state, then ; = 0, and the
atoms experience no force. The atomic beam should
be undeflected. If the atoms are in a state with l = 1 ,
the atoms either experience zero force, or experience
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force= ±�ℏ%�I%I . Thus the beam should split into three,
and the atoms should hit the screen at three spots.
When the experiment was performed, it was observed
that the beam of atoms split into only two beams. This
means that the z-component of � can have only two
values! Although it confirmed the quantization of an-
gular momentum, it went against the understanding
of quantum angular momentum. It remained a puz-
zle for several years until in 1925 George Uhlenbeck
and Samuel Goudsmit proposed an intrinsic angular
momentum of the electron called “spin”, which has
a non-integer value 1/2. This allowed two values of
<, ±1/2 , and could explain the two beams in the
Stern-Gerlach experiment.

The spin angular momentum
Spin is an intrinsic property of elementary particles,
which has nothing to do with the classical spinning
motion. It is as much of an intrinsic property as mass
or charge of a particle, which cannot be changed.
The spin angular momentum is then described by the
operators

(̂G , (̂H , (̂I , (̂
2,
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which have properties identical to the orbital angular
momentum operators, including the same commuta-
tion rules. Eigenstates of the operators are also similar
except that they obviously do not have any spatial rep-
resentation. The value of the spin is denoted by B
which can take integer or half-integer values, having
a 2B + 1 dimensional Hilbert space. Thus we have

[(̂G , (̂H] = 8ℏ(̂I , [(̂H , (̂I] = 8ℏ(̂G , [(̂I , (̂G] = 8ℏ(̂H ,

(1)
and

[(̂2, (̂G] = 0, [(̂2, (̂H] = 0, [(̂2, (̂I] = 0.
(2)

For eigenstates of these operators, we have

(̂I |B, <〉 = ℏ< |B, <〉, (̂2 |B, <〉 = ℏ2B(B + 1)|B, <〉.

Spin 1/2 and Qubits
Spin 1/2 is of particular importance in quantum me-
chanics, as the most common quantum particles, elec-
trons, protons and neutrons, all are spin 1/2 particles.
It is common to represent the eigenstates of the z-
component of a spin 1/2 as

(̂I | ↑〉 =
ℏ

2 | ↑〉, (̂I | ↓〉 = −
ℏ

2 | ↓〉,



Tabish Qureshi

and call them “up-spin” and “down-spin” states, re-
spectively. Matrix representation of spin 1/2 operators
is very commonly used, as it is easy to manipulate
2 × 2 matrices. The matrix representation of the op-
erators, in the basis of the eigenstates of (̂I , is given
by

(̂I =
ℏ
2

(
1 0
0 − 1

)
, (̂G =

ℏ
2

(
0 1
1 0

)
, (̂H =

ℏ
2

(
0 − 8
8 0

)
.

The three matrices are called Pauli matrices, and are
used more commonly than the spin matrices them-
selves as they do not involve the clutter of the factor
ℏ/2. They are represented as

�I =

(
1 0
0 − 1

)
, �G =

(
0 1
1 0

)
, �H =

(
0 − 8
8 0

)
.

There are several properties of Pauli matrices, that
are of interest, some being

�2
I = �2

G = �2
H = 1̂,

{�8 , �9} = 0, 8 ≠ 9.

The eigenstates of (̂I and �I are given by(
1
0

)
,

(
0
1

)
.
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It should be stressed here that the eigenstates of any

two-state system can be represented by
(
1
0

)
,

(
0
1

)
, ir-

respective of what the eigenvalues are. This aspect
came in handy in dealing with quantum bits or qubits
in the new field of quantum information. Classical bits
are entities which can take values 0 or 1. Same way
qubits are quantum observables with eigenvalues 0

and 1, with the corresponding eigenstates
(
1
0

)
and(

0
1

)
. A qubit crucially differs from a classical but by the

fact that apart from having states
(
1
0

)
and

(
0
1

)
, it can

be in a superposition state
(
21
22

)
, with |21 |2 + |22 |2 = 1.

There are an infinite number of such superposition
states.
The commutation relations for Pauli matrices are

[�8 , �9] = 28&8 9:�: ,

where &8 9: is the well known antisymmetric tensor.
Pauli matrices are Hermitian, and have trace zero.
They all have determinant equal to −1. From the rela-
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tion �2
8
= 1̂, one can easily prove

4 8
�8 = 1̂ cos 
 + 8�8 sin 
,

where 
 is a real number. It can be shown that any
2×2 matrix can be represented as a linear combination
of the Pauli matrices and 1̂. As the Hilbert space is
2-dimensional, any observable of the system will be
a 2 × 2 matrix. This means that any observable of
the system can be represented in terms of the Pauli
matrices.
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