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Quantum Mechanics: The Spin

Discovery of the spin
Let us have another look at the Stern-Gerlach experiment performed in 1922. A beam of
silver atoms, which are paramagnetic, was passed through an inhomogeneous magnetic
field. Suppose each atom has an inherent magnetic moment � , then the force on it in an
inhomogeneous magnetic field is given by

®� = ∇(®� · �,

Let us assume that �I � �G , �H, so that � · � ≈ �I�I. In this situation, the force will be
primarily along the z-axis,

®� = �I
%�I
%I

:̂,

where :̂ is a unit vector along z-axis. One can see that the deflection of the beam should
be proportional to the z-component of the magnetic moment. The magnetic moment is
related to the angular momentum by the following relation

®� = � ®(,

where � is called the gyromagnetic ratio. So the quantum observable corresponding to
the z-component of the magnetic moment is �̂I = �(̂I. Now we know the eigenvalues of
(̂I are ℏ<, where < = −; ,−; + 1, ..., ; − 1, ;. For the lowest non-zero value of angular
momentum, i.e. ; = 1, there are three eigenvalues of !I , given by ℏ, 0,−ℏ.
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A schematic diagram of the Stern-Gerlach
experiment.

Corresponding to these, there are three pos-
sible values of the magnetic moment �I =

�ℏ, 0,−�ℏ. These leads to three discrete
values of force � = �ℏ%�I%I , 0,−�ℏ

%�I
%I . From

quantum mechanics one expects that if the
silver atoms are in the ground state, then
; = 0, and the atoms experience no force.
The atomic beam should be undeflected. If
the atoms are in a state with l = 1 , the atoms
either experience zero force, or experience
force = ±�ℏ%�I%I . Thus the beam should
split into three, and the atoms should hit the
screen at three spots. When the experiment
was performed, it was observed that the beam of atoms split into only two beams. This
means that the z-component of � can have only two values! Although it confirmed the
quantization of angular momentum, it went against the understanding of quantum angular
momentum. It remained a puzzle for several years until in 1925 George Uhlenbeck and
Samuel Goudsmit proposed an intrinsic angular momentum of the electron called “spin”,
which has a non-integer value 1/2. This allowed two values of <, ±1/2 , and could explain
the two beams in the Stern-Gerlach experiment.
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The spin angular momentum
Spin is an intrinsic property of elementary particles, which has nothing to do with the
classical spinning motion. It is as much of an intrinsic property as mass or charge of a
particle, which cannot be changed. The spin angular momentum is then described by the
operators

(̂G , (̂H , (̂I , (̂
2,

which have properties identical to the orbital angular momentum operators, including the
same commutation rules. Eigenstates of the operators are also similar except that they
obviously do not have any spatial representation. The value of the spin is denoted by B
which can take integer or half-integer values, having a 2B + 1 dimensional Hilbert space.
Thus we have

[(̂G , (̂H] = 8ℏ(̂I , [(̂H , (̂I] = 8ℏ(̂G , [(̂I , (̂G] = 8ℏ(̂H , (1)

and
[(̂2, (̂G] = 0, [(̂2, (̂H] = 0, [(̂2, (̂I] = 0. (2)

For eigenstates of these operators, we have

(̂I |B, <〉 = ℏ< |B, <〉, (̂2 |B, <〉 = ℏ2B(B + 1)|B, <〉.

Spin 1/2 and Qubits
Spin 1/2 is of particular importance in quantum mechanics, as the most common quantum
particles, electrons, protons and neutrons, all are spin 1/2 particles. It is common to
represent the eigenstates of the z-component of a spin 1/2 as

(̂I | ↑〉 =
ℏ

2 | ↑〉, (̂I | ↓〉 = −
ℏ

2 | ↓〉,

and call them “up-spin” and “down-spin” states, respectively. Matrix representation of spin
1/2 operators is very commonly used, as it is easy to manipulate 2× 2 matrices. The matrix
representation of the operators, in the basis of the eigenstates of (̂I, is given by

(̂I =
ℏ
2

(
1 0
0 − 1

)
, (̂G =

ℏ
2

(
0 1
1 0

)
, (̂H =

ℏ
2

(
0 − 8
8 0

)
.

The three matrices are called Pauli matrices, and are used more commonly than the
spin matrices themselves as they do not involve the clutter of the factor ℏ/2. They are
represented as

�I =

(
1 0
0 − 1

)
, �G =

(
0 1
1 0

)
, �H =

(
0 − 8
8 0

)
.

There are several properties of Pauli matrices, that are of interest, some being

�2
I = �2

G = �2
H = 1̂,

{�8 , �9} = 0, 8 ≠ 9.

The eigenstates of (̂I and �I are given by(
1
0

)
,

(
0
1

)
.
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It should be stressed here that the eigenstates of any two-state system can be represented

by
(
1
0

)
,

(
0
1

)
, irrespective of what the eigenvalues are. This aspect came in handy in dealing

with quantum bits or qubits in the new field of quantum information. Classical bits are
entities which can take values 0 or 1. Same way qubits are quantum observables with

eigenvalues 0 and 1, with the corresponding eigenstates
(
1
0

)
and

(
0
1

)
. A qubit crucially

differs from a classical but by the fact that apart from having states
(
1
0

)
and

(
0
1

)
, it can be

in a superposition state
(
21
22

)
, with |21 |2 + |22 |2 = 1. There are an infinite number of such

superposition states.
The commutation relations for Pauli matrices are

[�8 , �9] = 28&8 9:�: ,

where &8 9: is the well known antisymmetric tensor. Pauli matrices are Hermitian, and have
trace zero. They all have determinant equal to −1. From the relation �2

8
= 1̂, one can easily

prove
4 8�8 = 1̂ cos  + 8�8 sin ,

where  is a real number. It can be shown that any 2 × 2 matrix can be represented as a
linear combination of the Pauli matrices and 1̂. As the Hilbert space is 2-dimensional, any
observable of the system will be a 2 × 2 matrix. This means that any observable of the
system can be represented in terms of the Pauli matrices.
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