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Quantum Mechanics: Time-Independent
Perturbation Theory

Static weak disturbance of a system
By now it is very clear that we are able to calculate the
eigenvalues and eigenfunctions of a very limited num-
ber of systems. For example, if a particle governed
by a Harmonic potential, the Hamiltonian is given by
𝐻̂ = 𝑝̂2/2𝑚 + 1/2𝑚𝜔2𝑥2, and can be solved easily.
On the other hand, if the Hamiltonian is something like
𝐻̂ = 𝑝̂2/2𝑚 + 1/2𝑚𝜔2𝑥2 + 𝛼𝑥4, one cannot find the
exact eigenfunctions and eigenvalues. However, if 𝛼
is much smaller than 1/2𝑚𝜔2, we expect that the par-
ticle will broadly behave like a Harmonic oscillator, but
with some small variations. The question is, can one
get an approximate solution in such a situation? The
answer is yes, and the time-independent perturbation
theory provides a method for doing that.
Let us assume the system is governed by the Hamil-
tonian

𝐻̂ = 𝐻̂0 + 𝜆𝐻̂1,

where the effect of 𝐻̂1 on the system is assumed to
be very weak. The sense in which it is assumed to
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be weak, will be clear in the following discussion. For
now it is sufficient to assume that the effect of 𝐻̂2

1
will be smaller than that of 𝐻̂1. The parameter 𝜆 is
not assumed to be small - it has been included just
to keep track of the order to which the effect of 𝐻̂1
is being used. For example, the presence of 𝜆3 will
indicate that one is using terms like 𝐻̂3

1 , or something
equivalent. In the end we will put 𝜆 = 1. Let us
assume that the eigenfunctions and eigenalues of 𝐻̂0
are known:

𝐻̂0 |𝜙𝑛⟩ = 𝐸
(0)
𝑛 |𝜙𝑛⟩, (1)

where |𝜙𝑛⟩, 𝐸(0)
𝑛 are the eigenstates and eigenvalues

of the unperturbed Hamiltonian 𝐻̂0, respectively. Con-
sequently, ⟨𝜙𝑛 |𝜙𝑚⟩ = 𝛿𝑛𝑚. We are interested in the
eigenstates and eigenvalues of the full Hamiltonian
𝐻̂:

𝐻̂ |𝜓𝑛⟩ = (𝐻̂0 + 𝜆𝐻̂1)|𝜓𝑛⟩ = 𝐸𝑛 |𝜓𝑛⟩. (2)
The basic idea of perturbation theory is that the full
eigenstates |𝜓⟩ and eigenvalues 𝐸𝑛 can be expanded
in the parameter 𝜆:

|𝜓𝑛⟩=|𝜓(0)
𝑛 ⟩ + 𝜆|𝜓(1)

𝑛 ⟩ + 𝜆2 |𝜓(2)
𝑛 ⟩ + 𝜆3 |𝜓(3)

𝑛 ⟩ + . . .

𝐸𝑛=𝐸
(0)
𝑛 + 𝜆𝐸(1)

𝑛 + 𝜆2𝐸
(2)
𝑛 + 𝜆3𝐸

(3)
𝑛 + . . . (3)

where the superscripts (1), (2), (3) . . . represent terms
with progressively weaker effect of the perturbation. In-
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serting the series form in the time-independent Schrödinger
equation for 𝐻̂, i.e. (2), we get

(𝐻̂0 + 𝜆𝐻̂1)(|𝜓(0)
𝑛 ⟩ + 𝜆|𝜓(1)

𝑛 ⟩ + . . . ) =
(𝐸(0)

𝑛 + 𝜆𝐸(1)
𝑛 + . . . )(|𝜓(0)

𝑛 ⟩ + 𝜆|𝜓(1)
𝑛 ⟩ + . . . )

(4)

Next we equate same order terms in 𝜆 on both sides,
and get

𝐻̂0 |𝜓(0)
𝑛 ⟩=𝐸(0)

𝑛 |𝜓(0)
𝑛 ⟩ (zero’th order in 𝜆) (5)

𝐻̂0 |𝜓(1)
𝑛 ⟩ + 𝐻̂1 |𝜓(0)

𝑛 ⟩=𝐸(0)
𝑛 |𝜓(1)

𝑛 ⟩ + 𝐸
(1)
𝑛 |𝜓(0)

𝑛 ⟩ (1st order in 𝜆)(6)

𝐻̂0 |𝜓(2)
𝑛 ⟩ + 𝐻̂1 |𝜓(1)

𝑛 ⟩=𝐸(0)
𝑛 |𝜓(2)

𝑛 ⟩ + 𝐸
(1)
𝑛 |𝜓(1)

𝑛 ⟩ +
𝐸
(2)
𝑛 |𝜓(0)

𝑛 ⟩ (2nd order in 𝜆) (7)

Comparing (5) with (1), it is clear that |𝜓(0)
𝑛 ⟩ = |𝜙𝑛⟩.

Using this, and multiplying (6) by ⟨𝜙𝑛 |, we get

⟨𝜙𝑛 |𝐻̂0 |𝜓(1)
𝑛 ⟩ + ⟨𝜙𝑛 |𝐻̂1 |𝜙𝑛⟩ = 𝐸

(0)
𝑛 ⟨𝜙𝑛 |𝜓(1)

𝑛 ⟩
+𝐸(1)

𝑛 ⟨𝜙𝑛 |𝜙𝑛⟩.
It is easy to see that

⟨𝜙𝑛 |𝐻̂0 |𝜓(1)
𝑛 ⟩ = ⟨𝜙𝑛 |𝐻̂0

(∑
𝑚

|𝜙𝑚⟩⟨𝜙𝑚 |
)
|𝜓(1)

𝑛 ⟩

= 𝐸
(0)
𝑛 ⟨𝜙𝑛 |𝜓(1)

𝑛 ⟩,



Tabish Qureshi

which simplifies the above equation to

𝐸
(1)
𝑛 = ⟨𝜙𝑛 |𝐻̂1 |𝜙𝑛⟩,

which tells us that the change in the energy of the
n’th energy level, due to the perturbing term, is just
𝜆⟨𝜙𝑛 |𝐻̂1 |𝜙𝑛⟩. Assuming that 𝜆 = 1, we have a very
simple result for the change in energy, namely, that
the change in energy is just equal to the expectation
value of the perturbation term 𝐻̂1, calculated using the
unperturbed eigenstate corresponding to that energy
level.
If one considers the normalization of an eigenstate
of the system including the perturbing term, |𝜓𝑛⟩ =

|𝜓(0)
𝑛 ⟩ + 𝜆|𝜓(1)

𝑛 ⟩ + 𝜆2 |𝜓(2)
𝑛 ⟩ + . . . , it can be done in

many ways. The most convenient way is to assume
⟨𝜙𝑛 |𝜓𝑛⟩ = 1, which leads to

⟨𝜙𝑛 |𝜓(1)
𝑛 ⟩ = 0 = ⟨𝜙𝑛 |𝜓(2)

𝑛 ⟩ = ⟨𝜙𝑛 |𝜓(3)
𝑛 ⟩ = . . .

In order to obtain the first order change in the eigen-
state of the system, we multiply (6) by ⟨𝜙𝑚 | (such that
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𝑚 ≠ 𝑛), to get

⟨𝜙𝑚 |𝐻̂0 |𝜓(1)
𝑛 ⟩ + ⟨𝜙𝑛 |𝐻̂1 |𝜙𝑛⟩=𝐸(0)

𝑛 ⟨𝜙𝑚 |𝜓(1)
𝑛 ⟩

+𝐸(1)
𝑛 ⟨𝜙𝑚 |𝜙𝑛⟩

𝐸
(0)
𝑚 ⟨𝜙𝑚 |𝜓(1)

𝑛 ⟩ + ⟨𝜙𝑛 |𝐻̂1 |𝜙𝑛⟩=𝐸(0)
𝑛 ⟨𝜙𝑚 |𝜓(1)

𝑛 ⟩

⟨𝜙𝑚 |𝜓(1)
𝑛 ⟩=

⟨𝜙𝑚 |𝐻̂1 |𝜙𝑛⟩
𝐸
(0)
𝑛 − 𝐸

(0)
𝑚

. (8)

Since we know that any state can be expanded in
terms of the complete set of eigenstates {|𝜙𝑛⟩} as
|𝜒⟩ = ∑

𝑚 ⟨𝜙𝑚 |𝜒⟩|𝜙𝑚⟩, the state |𝜓(1)
𝑛 ⟩ can be repre-

sented as

|𝜓(1)
𝑛 ⟩ =

∑
𝑚

⟨𝜙𝑚 |𝜓(1)
𝑛 ⟩|𝜙𝑚⟩ =

∑
𝑚(≠𝑛)

⟨𝜙𝑚 |𝐻̂1 |𝜙𝑛⟩
𝐸
(0)
𝑛 − 𝐸

(0)
𝑚

|𝜙𝑚⟩.

(9)
The 𝑚 = 𝑛 term is zero because ⟨𝜙𝑛 |𝜓(1)

𝑛 ⟩ = 0. One
would notice that the term 𝐸

(0)
𝑛 − 𝐸

(0)
𝑚 in the denom-

inator has to be nonzero, which ruled out situations
where two different states may have the same energy.
Thus, this procedure applies only to non-degenerate
systems. Thus, the first order correction to the n’th
eigenstate of the system can also be calculated. The
approximate eigenstates and eigenvalues, to first or-
der in perturbation, can then be written as (assuming
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𝜆 = 1)

𝐸𝑛 ≈ 𝐸
(0)
𝑛 + ⟨𝜙𝑛 |𝐻̂1 |𝜙𝑛⟩,

|𝜓𝑛⟩ ≈ |𝜙𝑛⟩ +
∑
𝑚(≠𝑛)

⟨𝜙𝑚 |𝐻̂1 |𝜙𝑛⟩
𝐸
(0)
𝑛 − 𝐸

(0)
𝑚

|𝜙𝑚⟩. (10)

Second order effects
In the preceding analysis we discussed the effect of
perturbation on the system up to first order. Some-
times one needs more accuracy than that, or more
commonly, sometimes the first order change in energy
is zero. In such a situation one would like to calculate
the effects of perturbation up to second order. The
second order change in energy can found by multi-
plying (7) by ⟨𝜙𝑛 |. Doing that, and remember that
⟨𝜙𝑛 |𝜓(1)

𝑛 ⟩ = 0 = ⟨𝜙𝑛 |𝜓(2)
𝑛 ⟩, we get

𝐸
(2)
𝑛 = ⟨𝜙𝑛 |𝐻̂1 |𝜓(1)

𝑛 ⟩
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Using (9) we get

𝐸
(2)
𝑛 =⟨𝜙𝑛 |𝐻̂1

∑
𝑚(≠𝑛)

⟨𝜙𝑚 |𝐻̂1 |𝜙𝑛⟩
𝐸
(0)
𝑛 − 𝐸

(0)
𝑚

|𝜙𝑚⟩

=
∑
𝑚(≠𝑛)

|⟨𝜙𝑚 |𝐻̂1 |𝜙𝑛⟩|2

𝐸
(0)
𝑛 − 𝐸

(0)
𝑚

. (11)

Second order correction can be calculated if one can
evaluate all the matrix elements ⟨𝜙𝑚 |𝐻̂1 |𝜙𝑛⟩. In in-
teresting thing to notice is that if 𝐸(0)

𝑛 is the ground
state energy, meaning 𝑛 is the lowest energy level,
all 𝐸(0)

𝑚 will be larger than it, making the second order
correction necessarily negative.

Degenerate states
It is clear that the above procedure breaks down when
there is degeneracy in the energy eigenstates of the
unperturbed Hamiltonian 𝐻̂0. Dealing with such a sit-
uation is not always easy. The general idea is that
if two states |𝜙𝑛1⟩, |𝜙𝑛2⟩ are degenerate, with an en-
ergy 𝐸

(0)
𝑛1 , any linear combination of these two is also

an eigenstate of 𝐻̂0, with the same eigenvalue. Thus,
instead of |𝜙𝑛1⟩, |𝜙𝑛2⟩, one can choose two eigen-
states |𝜒𝑛1⟩, |𝜒𝑛2⟩ which are linear combinations of
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|𝜙𝑛1⟩, |𝜙𝑛2⟩. These states are chosen such that 𝐻̂1 is
diagonal in that sub-basis. If the eigenvalues of 𝐻̂1 in
the basis |𝜒𝑛1⟩, |𝜒𝑛2⟩ are 𝜖1, 𝜖2, inserting these states
in (2), we get

(𝐻̂0 + 𝐻̂1)|𝜒𝑛𝑖⟩ = 𝐸𝑛𝑖 |𝜒𝑛𝑖⟩
𝐸
(0)
𝑛1 |𝜒𝑛𝑖⟩ + 𝜖𝑖 |𝜒𝑛𝑖⟩ = 𝐸𝑛𝑖 |𝜒𝑛𝑖⟩

𝐸𝑛𝑖 = 𝐸
(0)
𝑛1 + 𝜖𝑖 , 𝑖 = 1, 2. (12)

Thus the energy of the two levels, to first order in
the perturbation, is given by 𝐸𝑛1 ≈ 𝐸

(0)
𝑛1 + 𝜖1 and

𝐸𝑛2 ≈ 𝐸
(0)
𝑛1 + 𝜖2. The two states which were initially

degenerate, are no longer so due to the perturbation.
The perturbation lifts the degeneracy.
On might wonder if 𝐻̂0 and 𝐻̂1 do not commute, how
is it possible to find states which are eigenstates of
both. It is true that in general this cannot be done, but
in the subspace of a few degenerate eigenstates, the
matrix for 𝐻̂0 is effectively a unit matrix. In this special
situation, this can be done. For a detailed discussion,
the reader is referred to Quantum Mechanics by N.
Zettili.
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