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Quantum Mechanics: Time-dependent Per-
turbation Theory

Time-dependent weak disturbance of a system
When a system experiences a static, weak disturbance, we studied that the phenomenon
can be studied using time-independent perturbation theory. Broadly speaking, what hap-
pens is that the energy levels of the system are slightly modified, and so are the energy
eigenstates. The change is not drastic, and the essential character of the system is not
changed. But what happens when the weak disturbance is varying with time? An atom
interacting with a radiation field, is a good example of this. Radiation is like a time-varying
field. While studying the Bohr’s model of atom we are taught that an atom makes a tran-
sition from energy level 𝑛1 to 𝑛2, when radiation of frequency 𝜔 = (𝐸𝑛2 − 𝐸𝑛1)/ℏ falls
on it. However, no underlying theory is provided for it. In the following we will study the
time-dependent perturbation theory, which is the right tool to study such a phenomenon.
Let us suppose that there is a system with a known Hamiltonian �̂�0, whose dynamics can
also by solved. The time-dependent Schrd̈inger equation describes the dynamics of any
state of this system:

𝑖ℏ
𝜕

𝜕𝑡
|𝜓0(𝑡)⟩ = �̂�0 |𝜓0(𝑡)⟩.

Let us assume that there is a weak time-dependent perturbation on the system, charac-
terized by a time-dependent potential �̂�(𝑡). We would know the effect of the disturbance
exactly if we could solve the full Schrd̈inger equation

𝑖ℏ
𝜕

𝜕𝑡
|𝜓(𝑡)⟩ = (�̂�0 + �̂�(𝑡))|𝜓(𝑡)⟩.

Such an equation, in general, cannot be solved exactly. However, we will take advantage
of the fact that �̂�(𝑡) represents a weak disturbance on the system, and its effect would be
small. The undisturbed original dynamics of the system is known to us, and we will not be
bothered with it in the following analysis. In such a situation the interaction picture or the
Dirac picture comes in useful. In the interaction picture, the undisturbed dynamics is hidden,
whereas the dynamics due to the interaction is treated explicitly. The time dependence of
the state in the Schrd̈inger picture is

|𝜓(𝑡)⟩ = 𝑒−𝑖[�̂�0+�̂�(𝑡)]𝑡/ℏ |𝜓(0)⟩.

On the other hand, the state in the interaction picture is defined as

|𝜓(𝑡)⟩𝐼 = 𝑒 𝑖�̂�0𝑡/ℏ |𝜓(𝑡)⟩.

The equation of motion for |𝜓(𝑡)⟩𝐼 can be worked out to give

𝑖ℏ
𝑑 |𝜓(𝑡)⟩𝐼

𝑑𝑡
=�̂�𝐼(𝑡)|𝜓(𝑡)⟩𝐼 , (1)

where �̂�𝐼(𝑡) is the perturbation term, in the interaction picture, given by

�̂�𝐼(𝑡) = 𝑒 𝑖�̂�0𝑡/ℏ�̂�𝑒−𝑖�̂�0𝑡/ℏ.
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The advantage here is that the explicit time evolution of the interaction picture state is
governed only by the perturbation term.
Equation (1) is a first order differential equation, and its formal solution can be written as

|𝜓(𝑡)⟩𝐼=|𝜓(𝑡0)⟩𝐼 + 1
𝑖ℏ

∫ 𝑡

𝑡0

�̂�𝐼(𝑡′)|𝜓(𝑡′)⟩𝐼𝑑𝑡′. (2)

We call it a formal solution, and not a real solution, because |𝜓(𝑡)⟩𝐼 on the LHS is given
by the expression on RHS which has an integral involving |𝜓(𝑡)⟩𝐼 itself. Such an integral
equation can be solved iteratively by successively substituting the expression for |𝜓(𝑡)⟩𝐼
on the LHS back into the integral on the RHS. After successive substitutions, the equation
looks like

|𝜓(𝑡)⟩𝐼=|𝜓(𝑡0)⟩𝐼 + 1
𝑖ℏ

∫ 𝑡

𝑡0

𝑑𝑡′�̂�𝐼(𝑡′)|𝜓(𝑡0)⟩𝐼

+ 1
(𝑖ℏ)2

∫ 𝑡

𝑡0

𝑑𝑡′
∫ 𝑡′

𝑡0

𝑑𝑡′′�̂�𝐼(𝑡′)�̂�𝐼(𝑡”)|𝜓(𝑡0)⟩𝐼 + . . . (3)

Approximate solutions up to successive orders of accuracy can be obtained by terminating
the series successively retaining larger number of terms on the RHS. For certain situation,
retaining the first two terms on the RHS, and ignoring the rest, may suffice. That will be
called the first order approximation.

First order approximation
Let us assume that the unperturbed Hamiltonian �̂�0 has a set of eigenstates such that

�̂�0 |𝑛′⟩ = 𝐸𝑛′ |𝑛′⟩,
and also assume that at time 0 the system is in one of the eigenstates of �̂�0, namely |𝑚⟩. So
that initial state, at time 𝑡0, will evolve to (in the Schrödinger picture) |𝜓(𝑡0)⟩ = 𝑒−𝑖�̂�0𝑡0 |𝑚⟩.
In the interaction picture the same state would look like

|𝜓(𝑡0)⟩𝐼 = 𝑒 𝑖�̂�0𝑡/ℏ |𝜓(𝑡0)⟩ = |𝑚⟩. (4)

This shows the advantage in using the interaction picture - the known time evolution via
the the unperturbed Hamiltonian is hidden. Substituting (4) in (3), and retaining only terms
up to first order in �̂�𝐼 , we get

|𝜓(𝑡)⟩𝐼 = |𝑚⟩ + 1
𝑖ℏ

∫ 𝑡

𝑡0

𝑑𝑡′�̂�𝐼(𝑡′)|𝑚⟩.

We are interested in finding the probability that at a later time 𝑡, the system is found
in another eigenstate of �̂�0, namely 𝑒−𝑖�̂�0𝑡/ℏ |𝑛⟩. The probablilty amplitude for such a
transition can be calculated by

⟨𝑛, 𝑡 |𝜓(𝑡)⟩ = ⟨𝑛 |𝜓(𝑡)⟩𝐼 = ⟨𝑛 |𝑚⟩ + 1
𝑖ℏ

∫ 𝑡

𝑡0

𝑑𝑡′⟨𝑛 |�̂�𝐼(𝑡′)|𝑚⟩

= 𝛿𝑛𝑚 + 1
𝑖ℏ

∫ 𝑡

𝑡0

𝑑𝑡′⟨𝑛 |𝑒 𝑖�̂�0𝑡′/ℏ�̂�𝑒−𝑖�̂�0𝑡′/ℏ |𝑚⟩

= 𝛿𝑛𝑚 + 1
𝑖ℏ

∫ 𝑡

𝑡0

𝑑𝑡′𝑒 𝑖(𝐸𝑛−𝐸𝑚)𝑡′/ℏ⟨𝑛 |�̂�(𝑡′)|𝑚⟩ (5)
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Using this we can calculate the probability that the system will make a transition to another
energy eigenstate |𝑛⟩ as

𝑃𝑚𝑛(𝑡) =
����1ℏ ∫ 𝑡

𝑡0

𝑑𝑡′𝑒 𝑖(𝐸𝑛−𝐸𝑚)𝑡′/ℏ⟨𝑛 |�̂�(𝑡′)|𝑚⟩
����2 . (6)

One thing that is obvious from the above expression is that if there is no perturbation, the
system will continue to remain in the eigenstate |𝑚⟩ it was in, to begin with.

Static disturbance suddenly switched on
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Let us first consider a static perturbation �̂�

suddenly switched on at time 𝑡0 = 0. In this
situation (6) reduces to

𝑃𝑚𝑛(𝑡) =
����1ℏ ∫ 𝑡

0
𝑑𝑡′𝑒 𝑖(𝐸𝑛−𝐸𝑚)𝑡′/ℏ⟨𝑛 |�̂� |𝑚⟩

����2
= 1

ℏ2

(
sin(𝜔𝑛𝑚𝑡/2

𝜔𝑛𝑚/2

)2

|𝑉𝑛𝑚 |2 , (7)

where 𝜔𝑛𝑚 = (𝐸𝑛 − 𝐸𝑚)/ℏ. The function
sin2 𝑥𝑡
𝑥2𝑡

is plotted in the figure. For larger val-
ues of 𝑡, is becomes narrower and taller. In
order to see what happens at long times, it
is useful to recall the limit of the following
function

lim
𝑡→∞

sin2 𝑥𝑡

𝜋𝑥2𝑡
= 𝛿(𝑥),

where 𝛿(𝑥) is the familiar Dirac delta function. One can then calculate the probability per
unit time that the system makes a transition to another eigenstate |𝑛⟩, which is the transition
rate

Γ𝑚𝑛 = lim
𝑡→∞

𝑃𝑚𝑛(𝑡)
𝑡

=
2𝜋
ℏ
𝛿(𝐸𝑛 − 𝐸𝑚)|𝑉𝑛𝑚 |2.

The physical meaning of this relation is that if there is a static weak perturbation which is
suddenly switched on, it can cause transition between states of the system which have
same energy. It cannot cause transition between states of different energy. In many
physical problems, like scattering, there is a continuous set of eigenstates (momentum
states in the case of scattering) into which the system can make a transition. In such a
case it is useful to calculate the transition rate from a given initial state |𝑚⟩ to all possible
final energy eigenstates. In such situations the energy levels may be degenerate with a
density of states 𝜌(𝐸𝑛). This transition rate is given by∑

𝑛

Γ𝑚𝑛 =
2𝜋
ℏ

∫
𝑑𝐸𝑛𝜌(𝐸𝑛)𝛿(𝐸𝑛 − 𝐸𝑚)|𝑉𝑛𝑚 |2 =

2𝜋
ℏ
𝜌(𝐸𝑚)|𝑉𝑛𝑚 |2.

The above two relations are extremely useful in various physical situations, and are known
as Fermi golden rule.
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Periodic disturbance
Next we look at the interesting scenario where the external perturbation is periodically
varying in time. This situation would describe an electron in an atom interacting with a
monochromatic radiation. Typically the potentian for light-matter interaction is

�̂�(𝑡) = �̂�0𝑒
−𝑖𝜔𝑡 + �̂�†

0 𝑒
𝑖𝜔𝑡 ,

where 𝜔 is the frequency of the oscillating field. Inserting this in (6), we get

𝑃𝑚𝑛(𝑡) =
����1ℏ ∫ 𝑡

0
𝑑𝑡′𝑒 𝑖(𝜔𝑛𝑚−𝜔)𝑡′/ℏ⟨𝑛 |�̂�0 |𝑚⟩ + 𝑒 𝑖(𝜔𝑛𝑚+𝜔)𝑡′/ℏ⟨𝑛 |𝑉†

0 |𝑚⟩
����2

= 1
ℏ2

(
sin((𝜔 − 𝜔𝑛𝑚)𝑡/2

(𝜔 − 𝜔𝑛𝑚)/2

)2

|𝑉0𝑛𝑚 |2 + 1
ℏ2

(
sin(𝜔 + 𝜔𝑛𝑚)𝑡/2
(𝜔 + 𝜔𝑛𝑚)/2

)2 ��𝑉†
0 𝑛𝑚

��2 , (8)

where we have ignored the cross terms as the overlap between them is negligible, as can
be seen from the plot of this function, in the figure. Following the procedure in the preceding
section, we find that the transition rate, from the state |𝑚⟩ to |𝑛⟩, in the long time limit, has
the form

Γ𝑚𝑛 =
2𝜋
ℏ

(
𝛿(𝜔 − 𝜔𝑛𝑚)|𝑉0𝑛𝑚 |2 + 𝛿(𝜔 + 𝜔𝑛𝑚)|𝑉†

0 𝑛𝑚
|2
)
.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

-10 -5  0  5  10

(s
in

2
(3

(x
-5

)/
3

(x
-5

)2
 +

 (
s
in

2
(3

(x
+

5
)/

3
(x

+
5

)2

x

The function sin2(𝑥−5)𝑡
(𝑥−5)2𝑡 + sin2(𝑥+5)𝑡

(𝑥+5)2𝑡 plotted for
𝑡 = 3.

The above relation involves two Dirac delta
functions, centered at 𝜔 = ±𝜔𝑛𝑚. It implies
that a transition from energy level 𝐸𝑚 to 𝐸𝑛

can take place only when the frequency of
the oscillating field is equal to 𝜔𝑛𝑚. This is
the quantum mechanical explanation of the
assumption in Bohr’s model of atom which
says that an electron makes a transition from
one energy level to the other by absorbing a
photon of frequency 𝜔𝑛𝑚. Here the second
delta function has no contribution. However,
there can be a situation where 𝐸𝑚 > 𝐸𝑛,
and 𝜔𝑛𝑚 is negative. In this case the first
term does not contribute, but the second term
does. This case represents the phenomenon
of stimulated emission, where the system makes a transition from a higher energy level to
a lower energy level, due to interaction with radition of frequency (𝐸𝑚 − 𝐸𝑛)/ℏ.
A few comments can be made here. In general, time-dependent perturbations cause
transition between different states of the system, unlike static perturbations. It may appear
that the matrix elements |𝑉0𝑛𝑚 | play little role here. However it should be emphasized
the these matrix elements play the most important role. They decide whether a transition
between two levels is allowed or not. We know that in atoms there are often forbidden
transitions - they are forbidden simply because the matrix element |𝑉0𝑛𝑚 | for those two
states is zero. In atomic transitions for example, |𝑉0𝑛𝑚 | govern the selection rules. Most
often �̂�0 does not involve the spin. So ⟨𝑛 |�̂�0 |𝑚⟩ will be zero if the states |𝑚⟩, |𝑛⟩ have
different spins.
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