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Statistical Mechanics: Lecture 2

Microcanonical ensemble and entropy
We consider a system which is thermally isolated from its surroundings. Here only those
microstates will be allowed which satisfy the fixed energy constraint, H(p , q) � E. The
microstates of such a system, all equally probable, form an ensemble called microcanonical
ensemble. The volume of the phase space enclosed by a very thin constant-energy “shell"
should be a measure of the number of microstates. However, since p and q are continuous
variables, there will be infinitely many points inside the shell. From the quantum mechanical
uncertainty principle, we know that the product of the uncertainties ∆p and ∆q cannot be
more precise than ~. So, the smallest cell in a 2-dimensional phase space will have size
~. This is the phase volume of one microstate for a single particle. For a 6N-dimensional
phase space, the volume of one microstate will be ~3N .
Now the total number of microstates for a gas of N particles with energy E, in a volume V
can be written as

Ω(E,N,V) �
1
~3N

∫
E

∏
i

dpidqi , (1)

where the integrals over p’s and q’s are subject to the contraint that the total energy is fixed
to be E.
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Let us now consider two systems 1 and
2, with energy E1 and E2, volume V1
and V2, number of particles N1 and
N2, respectively. The total energy is
fixed, E1 + E2 � ET . Let the two sys-
tems be isolated to start with. The
number of microstates of the two sys-
tems are denoted by Ω1(E1,N1,V1)
and Ω2(E2,N2,V2). The total number
of microstates of the combined system
is given by

Ω(E1,N1,V1, E2,N2,V2) � Ω1(E1,N1,V1)Ω2(E2,N2,V2) (2)

Let the two systems now come into thermal contact with each other. They will exchange
energy so that E1 and E2 will change, but ET will remain unchanged. Equilibrium will
be attained for that value of E1 or E2 which maximizes the number of microstates of the
combined system. To obtain that condition we put ∂Ω/∂E1 equal to zero.

∂Ω
∂E1

�
∂Ω1
∂E1
Ω2 +Ω1

∂Ω2
∂E1

� 0 (3)



Tabish Qureshi

∂Ω1
∂E1
Ω2�−Ω1

∂Ω2
∂E1

�−Ω1
∂E2
∂E1

∂Ω2
∂E2

�Ω1
∂Ω2
∂E2

1
Ω1

∂Ω1
∂E1

�
1
Ω2

∂Ω2
∂E2

∂ log(Ω1)
∂E1

�
∂ log(Ω2)
∂E2

(4)

From thermodynamics we know that in such a situation, equilibrium is attained when the
temperature of the two systems becomes equal, T1 � T2. In thermodynamics, temperature
is defined as

1
T

�
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Thus the condition of equlibrium should be
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Comparing (4) and (5) we infer
S ∝ log(Ω) (6)

Since the relation between thermodynamics and mechanics should be fundamental, Boltz-
mann postulated that the proportionality constant in the above equation should be a
universal constant, independent of any particular system. This constant is Boltzmann’s
constant k, sometimes also written as kB. Thus we obtain the expression for entropy, which
is of central importance in statistical mechanics

S � k log(Ω). (7)

Probability of macrostates
From the preceding analysis, it is clear that the probability of a macrostate depends on how
many microstates are there in it. Let us quantify this statement now. Suppose there is a
configuration of the gas, which we denote by Γ. Themacrostate Γ could, for example, denote
a particular momentum distribution of the particles, or it could denote a particular position
distribution of the particles. Let us assume that the number of microstates associated with
Γ is denoted by ΩΓ. Then the probability of the macrostate Γ is given by

PΓ �
ΩΓ

Ω(E,V,N)
, (8)

where Ω(E,V,N) is the total number of microstates of the gas. Since every microstate is
equally probable, the above equation is very obvious. It just says that the probability of a
state Γ is equal to the number of microstates in Γ divided by the total number of microstates.
In terms of phase space, the number of microstates can be written as

ΩΓ �
1
~3N

∫
Γ

∏
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dpidqi , Ω(E,N,V) �
1
~3N
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E
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dpidqi , (9)
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where
∫
Γ
denotes integral over the region of phase-space described by Γ. It of course also

respects the constraint of a fixed energy E.
An example here would make things clearer. Let us consider an ideal gas of N particles,
enclosed in a volume V, and with a total energy E. We want to know, what is the probability
of the whole gas spontaneously occupying only one particular half of the box. We know
that this practically never happens, so its probability should be neglegible. Let us calculate
it. Γ now denotes the state of the gas with all particles in one particular half of the box. We
know that there is huge number of ways this is possible, because eventhough the particles
are in one half of the box, they have many microstates corresponding to them shuffling
their positions and velocities. In eqn (9), the integral over space can be carried out easily.
For each particle, the volume integral gives a V , for Ω(E,N,V), and it gives a V/2 for ΩΓ.
Integrals over momenta are identical for ΩΓ and Ω(E,N,V). Thus the probability of the
gas occupying one half of the volume of the box is given by

PΓ�
1
~3N (V/2)N

∫
Γ
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We see that the probability of all the particles spontaneously occupying one particular half
of the box is 1/2N . Even for just 100 particles this number is negligibly small. For N ∼ 1023,
the probability will be so very tiny that one can wait till the end of the world, and still such
a state will never come up. On the other hand, if the gas has just, say, 5 particles, the
probability of such a state occuring is 0.03125. In this case, one can actually observe all
particles by chance coming to one half of the box, with some patience.
So now we understand why equilibrium is what it looks like. It is just a macrostate which
has the maximum number of microstates associated with it.
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