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Statistical Mechanics: Lecture 3

Classical Ideal Gas
Now that we have the expression for the entropy in microcanonical ensemble, let us use it
to calculate the entropy of an ideal gas of classical particles. Let there be N particles of
mass < each, enclosed in a box of volume + . The Hamiltonian is given by
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where sum over 8 represents sum over all particles and the three components. Let the total
energy of the gas be �. Total number of microstates can then be written as
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The integral over space can be carried out straightaway, giving the volume,
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If the summation over 8 were not there, this would be the equation of a sphere with radius√
2<�. With the summation, it is the equation of a 3N-dimensional hypersphere of radius√
2<�. We assume that the energy is not exactly contant, but can vary by an amount Δ�.
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The momentum space volume accessible to the gas is a thin shell of a 3N-dimensional
hypersphere of radius

√
2<�, and thickness
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2�Δ�. Here we have used the fact that

' =
√

2<�, and hence 3' =
√

<
2� 3� Clearly our thermodynamic results should not depend

on this arbitrary Δ�. Volume in the momentum space accesible to the system is equal to
(surface area of a 3N-dimensional hypersphere of radius
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So, the surface area of a 3N-dimensional hypersphere of radius
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2<� is given by
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Total number of microstates can now be written as
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Entropy of the gas can now be written as
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For a macroscopic gas, # is very large, of the order of 1023, and it makes sense to use the
Stirling formula log(=!) ≈ = log(=) − =. So we get

log{(3#/2 − 1)!}≈(3#/2 − 1) log(3#/2 − 1) − 3#/2 + 1
≈(3#/2 − 1) log(3#/2) − 3#/2 + 1
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Entropy of the gas now takes the form
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In the equation above, the terms in the curly brackets are all much smaller than the other
terms, which are at least of order # , and hence can be neglected to yield
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Entropy of Mixing: Gibbs Paradox
Mixing of two different gases is an irreversible process. It should thus lead to an increase
in entropy. Let us check that out in our expression for entropy of an ideal gas. Let there be
a box of volume + , which is partitioned as shown in the figure. Let there be two different,
but similar, gases in the two partitions, at the same temperature and pressure. We remove
the partition, and allow the gases to mix.
Before mixing, the initial entropy of the combined system, before mixing, is just the sum of
the entropies of the two gases:
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After the partition is removed, the energy, pressure, temperature of the gases will not
change, as they were already at same temperature and pressure. The only difference is
that now volume + is available to both the gases. The final entropy, after mixing, looks like
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The change in entropy is given by
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Clearly, the entropy increases after mix-
ing of the two gases, which is what one
would expect. Δ( is called the entropy
of mixing. However, there is a problem.
If the two gases were identical, remov-
ing the partition should not have any
effect. But our expression for entropy
given by (12), yields the same change
in entropy (15) even if the two gases
are identical! One can verify that for
same gas in the two partitions, the expression (14) reduces to the expression (12) of
entropy of a gas of N particles in a volume V. In this case �1/#1 = �2/#2 = �/# . The
final entropy in the case of identical gases, is given by
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For the case of same gas in the two parts, removing the partition is a reversible process,
because one can reinsert the partition later, and one will not be able to make out if the
partition was removed before. Hence, the change in entropy on removing the partition
should be zero. The fact that expression (12) for entropy yields a non-zero entropy of
mixing for identical gases, is called Gibbs paradox.
Gibbs empirically realized that while counting the number of microstates, if one divides the
number of microstates by # !, the paradox disappears. He concluded that our counting of
microstates must be thus wrong. The way we have counted the microstates, interchanging
two particles gives one a new microstate. However, from quantum mechanics we know
that elementary particles and atoms should be treated as identical particles. So, the way
we have counted the microstates, we have done an overcounting by assuming the particles
to distinguishable. So, we must divide by # ! to correct for it. Equantion (8) will thus take
the following form
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Using Stirling’s approximation for # !, we have to subtract :(# log(#) − #) from (12) to
obatin the correct expression for entropy
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This is called the Sackur-Tetrode equation, and describes the entropy of a classical
(monoatomic) ideal gas. It is named for Hugo Martin Tetrode (1895-1931) and Otto Sackur
(1880-1914), who developed it independently as a solution of Boltzmann’s gas statistics
and entropy equations, at about the same time in 1912.
The entropy of two gases before mixing is now given by
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If the two gases are the same, +1/#1 = +2/#2 = +/# and energy per particle is also
same, if they are at the same temperature and pressure, �1/#1 = �2/#2 = �/# . So, the
above equation reduces to
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which is the equation for the entropy of the gas of N particles in a volume V, that is, the gas
after mixing. So, for the case of same gas, mixing has no effect.
One can verify that for the case of different gases, the Sackur-Tetrode equation leads the
same expression for the entropy of mixing, as given by (15).

Equation of state
In thermodynamics, the pressure of a gas is defined as
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We plugin the expression for entropy from (18) in the equation to obtain the pressure of our
classical ideal gas.
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This is the familiar equation of state for an ideal gas.
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