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Statistical Mechanics: Lecture 4

Canonical Ensemble

The microcanonical ensemble, which we studied in the
previous lecture, is applicable to systems which are
thermally insulated. However, in reality the systems
are interacting with their surroundings. A typical jar
of gas is not insulated, but can exchange energy with
the surroundings. For this reason, and also that the
microcanonical ensemble is often cumbersome to use,
we formulate another ensemble which better describes
realistic situations.
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Most thermodynamic systems we study are isolated
only in the sense that the particles cannot penetrate
the walls of the enclosure, but energy can be exchange
through the walls. The surroundings can be consid-
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ered as a kind of heat-bath or heat-reservoir, which
is much much larger than our system of interest. It is
assumed to be so large that any exchange of energy
with our system of interest, will not have any noticeable
effect on it. The system of interest, and the heat-bath,
taken together, is assumed to be a closed system such
that

� + �� = �) , (1)

where � is the energy of our system of interest, �� is
the energy of the heat-bath, and their sum is �) . �
and �� are supposed to be variable, but �) is fixed.
Total number of microstates of the combined system
is

Ω =

∫
Ω((�)Ω�(��)3� (2)

where the integral is a sum over possiblities of various
amounts of energy exchanges between the system
and the heat-bath. For example, the term � = 0 in the
integral would correspond to a situation where the sys-
tem transfers all its energy to the heat-bath. The total
system is closed, and can be treated in microcanonical
ensemble.
Now, the number of microstates corresponding to the
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system having energy � is given by

Ω(�)=Ω((�)Ω�(��)
=Ω((�)Ω�(�) − �) (3)

One should convince oneself that if there are two sys-
tems with, say, 3 microstates each, the combined sys-
tem will have 3×3 = 9 microstates. Microstates of the
combined system should have been labelled by � and
��, but since there is only one independent variable,
it suffices to label it by �. We now write Ω�(�) − �)
in terms of the entropy of the heat-bath, using the
Boltzmann definition of entropy ( = : logΩ:

Ω(�)=Ω((�)4 log(Ω�(�)−�))

=Ω((�)4
1
: : log(Ω�(�)−�))

=Ω((�)4
1
: (�(�)−�)) (4)

where (� is the entropy of the heat-bath. Since the
heat-bath is much much larger than our system of
interest, it is obvious that � � �� , �) . The entropy of
the heat-bath can now be expanded in a Taylor series
in �:

(�(�)−�) = (�(�))+�
%(�
%�

����
�=0
+�

2

2!
%2(�
%�2

����
�=0
+. . .
(5)
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We ignore the �2 and higher order terms in the series,
assuming � to be small, and plug in this expression in
(4)

Ω(�)≈Ω((�) exp
[
1
:
(�(�)) +

1
:
�
%(�
%�

]
(6)

But
%(�
%�

=
%��
%�

%(�
%��

= −%(�
%��

= − 1
)
, (7)

where ) is the temperature of the heat-bath. Strictly
speaking, this should be the temperature of the heat-
bath when the system has tranferred all its energy
to the heat-bath because %(�

%� in the above equation

is actually %(�
%�

���
�=0

. However, since the heat-bath is
assumed to be much larger that the system, its tem-
perature will not change noticeable when it exchanges
energy with the system.
The number of microstates of the combined system,
corresponding to the system having energy �, can
now be written as

Ω(�)=Ω((�) exp
[
1
:
(�(�)) −

�

:)

]
=Ω((�)4(�(�) )/:4−�/:) (8)
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Let us reflect at this expression for a moment. The
term 4(�(�) )/: is constant, as far as � is concerned.
From microcanonical ensemble we know that all mi-
crostates (with same energy) are equally probable.
This holds true here too, but for the microstates of the
system plus heat-bath. If one wants to concentrate
only on the system, as we do because we it is the
system we are studying, things are slightly different.
Corresponding to a microstate of the system with en-
ergy �, the heat-bath has 4(�(�) )/:4−�/:) microstates.
So, two microstates of the system with different ener-
gies, will have different number of microstates of the
heat-bath associated with them. From the system’s
point of view, it will appear as if microstates of the sys-
tem with different energies, have different probability
of occurance.
Total number of microstates of the combined system
can be written as

Ω=

∫
Ω((�)4(�(�) )/:4−�/:)3� (9)

So, the probability of the system having energy �
should be equal to the number of microstates cor-
responding to the system having energy �, divided by
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the total number of microstates

%(�)= Ω((�)4(�(�) )/:4−�/:)∫
Ω((�)4(�(�) )/:4−�/:)3�

=
Ω((�)4−�/:)∫
Ω((�)4−�/:)3�

=
Ω((�)4−�/:)

/
, (10)

where / =
∫
Ω((�)4−�/:)3� is called the partition

function. Earlier we had defined the number of mi-
crostates of a system in terms of accessible phase-
space volume,

Ω(�) =
∫
�

3?3@

Δ
, (11)

where integral of 3?3@ represents integral over all po-
sitions and momenta of all particles, over the constant
energy surface with energy �, and Δ is the smallest
phase-volume of one microstate. For example, for N
particles in 3-dimensions, Δ = ℏ3# . The probability of
the system having energy � can now be written as

%(�)=
1
Δ

∫
�
3?3@4−�(?,@)/:)

1
Δ

∫
3?3@4−�(?,@)/:)

(12)

Notice that the integral in the numerator is over a con-
stant energy surface with fixed energy �, while the
that in the denominator is over all phase space.
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We can thus define a density function

�(?, @) = 4−�(?,@)/:)

1
Δ

∫
3?3@4−�(?,@)/:)

=
4−�(?,@)/:)

/
,

(13)
such that �(?, @)3?3@ gives the probability of the sys-
tem having momentum between ? and ? + 3? and po-
sition between @ and @ + 3@. Thus �(?, @) describes
the normalized density of microstates (of the system
plus heat-bath) in phase space. The partition function
is now written as

/ =
1
Δ

∫
4−�(?,@)/:)3?3@ (14)

The partition function / might not look very impor-
tant as one might think that the information about mi-
crostates etc has already been summed over. How-
ever, the partition function turns out to be a singly
most useful entity in statistical mechanics, and most
measurable quantities can be expressed in terms of
/.
The thermal average of any quantity � can now be
written as

〈�〉 = 1
Δ

∫
�(?, @)�(?, @)3?3@ = 1

Δ

1
/

∫
�4−�/:)3?3@

(15)
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The stage is now set for us to study any system using
canonical ensemble.
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