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Statistical Mechanics: Problems 6.1
1. Problem: A particle is confined to a 1-dimensional harmonic oscillator potential +(G) =

1
2 G

2. Evaluate the canonical partition function of the oscillator, and find the average of
displacement squared, 〈G2〉.
Solution: Energy of the Hamonic oscillator is given by
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Average of displacement squared,
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2. Problem: Let there be quantum mechanical rotator with a Hamiltonian �̂ = !̂2

2� . As-
suming that the rotator can take only two angular momentum values ; = 0 and ; = 1,
calculate the average energy in canonical ensemble.
Solution: Eigenvalues of the Hamiltionian can be obtained by using the simultaneous
eigenstates of !̂2 and !̂I , which are denoted by |;<〉. These states are also eigenstates
of �̂,

�̂ |;<〉 = ℏ2;(; + 1)
2� |;<〉

There are 2;+1 values of< corresponding to each value of ;. Eigenvalues do not depend
on <, and hence energy-levels are (2; + 1)-fold degenerate. The partition function can
thus be written as
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Average energy is given by
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3. Problem: An ideal gas of N spinless atoms occupies a volume V at temperature T. Each
atom has only two energy levels separated by an energy Δ. Find the chemical potential,
free energy, average energy.
Solution: Let the two energy levels have energy &1 and &2, with &2 − &1 = Δ. For one
particle, the partition function can be written as / = 4−�&1 + 4−�&2 . The atoms being,
non-interacting, one can write the partition function for # particles as
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Helmholtz free energy is given by
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� =

(
%�

%#

)
),+

= −:) log
(
4−�&1 + 4−�&2

)
Average energy is given by
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4. Question: A simple harmonic one-dimensional oscillator has energy levels �= = (= +

1/2)ℏ$, where $ is the characteristic oscillator (angular) frequency and = = 0, 1, 2, . . .
(a) Suppose the oscillator is in thermal contact with a heat reservoir :) at temperature

T. Find the mean energy of the oscillator as a function of the temperature T, for the
cases :)

ℏ$ � 1 and :)
ℏ$ � 1

(b) For a two-dimensional oscillator, = = =G + =H, where �=G = (=G + 1/2)ℏ$G and
�=H = (=H + 1/2)ℏ$H, =G = 0, 1, 2, . . . and =H = 0, 1, 2, . . . , what is the partition
function for this case for any value of temperature? Reduce it to the degenerate case
$G = $H.

Solution (a): The partition function can be written as
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The average energy can now be easily calculated
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For �ℏ$ � 1, which is the high-temperature limit, coth(�ℏ$/2) ≈ 2/�ℏ$. The average
energy takes the form 〈�〉 ≈ :). For �ℏ$ � 1, which is the very-low-temperature limit,
coth(�ℏ$/2) ≈ 1. The average energy takes the form 〈�〉 ≈ ℏ$

2 , which is precisely the
zero-point energy of the oscillator.
Solution (b): The partition function can be written as
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When $G = $H = $, the above relation reduces to
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This is exactly the same as the partition function of two independent, similar, one-
dimensional harmonic oscillators.

5. Question: Consider a classical ideal gas in a box in three dimensions. Derive the
Maxwell-Boltzmann distribution of velocity using canonical ensemble.

Solution: We know that the density function in canonical ensemble is given by
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where the partition function is given by
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Here we have # gas atoms moving in 3-dimensions. Since the atoms are non-interacting,
let us consider a single atoms in 3-dimensions. Energy of the atom is given by
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The partition is function has already been calculated as
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Probability of the atom to have a velocity ®E, and hence momentum ®? = <®E, is given by
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where %̃(®?) probability density for the atom to have a momentum ®?, and the integral
is only over space. We can write the above in terms of the absolute momentum ?

(irrespective of the direction), as
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where we have used spherical polar coordinates in momentum space, giving
∫
33®? =∫

?23?3�?3)?. Substituting the expression for / in the above, we get
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Probability of an atom to have an absolute velocity E (speed) can now be obtained by
simply replacing ? by <E in above equation, to get
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which is the required Maxwell-Boltzmann distribution of velocities.


