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Thermodynamic Properties of Ideal Gases

We now wish to study the thermodynamic properties
of an ideal gas of quantum particles, in grand canon-
ical ensemble. For this purpose, the grand potential
that we introduced eralier, come in useful. The grand
potential is defined as

Φ(T,V, µ) � −kT logZ � U − TS − µN � −PV
(1)

This single relation can be used to relate various ther-
modynamic quantities to the grand partition function
Z:
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(2)



Tabish Qureshi

The equation of state can be written, from (1), as

PV
kT

� logZ �


−∑

j log(1 − e−β(ε j−µ)) (Bose-Einstein)∑
j log

(
1 + e−β(ε j−µ)

)
(Fermi-Dirac)

(3)
Instead of describing the gas in terms of the chemical
potential µ, it is often convenient to describe it in terms
of fugacity z ≡ eβµ. The grand partition function can
then be assumed to be a function of z, instead of µ,
i.e.,Z(z , T,V). The equation of state then becomes

PV
kT

� logZ �


−∑

j log(1 − ze−βε j ) (Bose-Einstein)∑
j log

(
1 + ze−βε j

)
(Fermi-Dirac)

(4)
Average number of particles in the system is given by

〈N〉 �

∑

k
1

z−1eβεk−1 (Bose-Einstein)∑
k

1
z−1eβεk+1 (Fermi-Dirac)

(5)

To proceed any further, we need to know the details
of the system, namely the precise form of the single
particle energies ε j. Let us assume that the gas is
enclosed in cubical box of length L. The energy of
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one particle is given by

εn �
n2π2~2

2mL2

The momentum eigenvalue is then given by pn �

nπ~/L, and the energy is given by εn � p2
n/2m. In-

stead of assuming a box with rigid walls, if one applies
periodic boundary conditions (which implies that the
wavefunction and also its derivative, should match
at the two opposite walls), one gets pn � n2π~/L �

nh/L. 1 Instead of summing over n, one can sum over
pn, as n �

Lpn
h . As the particle is confined in a cubi-

cal box, there are three quantum numbers nx , ny , nz .
As the length of the box becomes very large (macro-
scopic), the momenta are so closely spaced that they
can be assumed to form a continuum. So, in this limit,
instead of summing over nx , ny , nz , one can integrate
over px , py , pz∑

nx ,ny ,nz

→ V
h3

∫ ∞

−∞
dpx

∫ ∞

−∞
dpy

∫ ∞

−∞
dpz

As the energy does not depend on px , py , pz individu-
ally, but only on p2

x + p2
y + p2

z , one can use spherical

1See appendix
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polar coordinates in the momentum space integration∑
nx ,ny ,nz

→ V
h3

∫ ∞

0
4πp2dp

Ideal Bose Gas

Let us first look at the case of an ideal gas of bosons.
The average number of particles can now be written
as

〈N〉 � 4πV
h3

∫ ∞

0

p2

z−1eβp2/2m − 1
dp (6)

Choosing a new variable of integration, t � βp2/2m,
we get

〈N〉 � 2V√
πh3
(2mπ/β)3/2

∫ ∞

0

√
t

z−1e t − 1
dt ≡ V

λ3 g3/2(z)
(7)

where, λ � h/
√

2πmkT, and

gν(z) �
1
Γ(ν)

∫ ∞

0

tν−1

z−1e t − 1
dt

Thus, number of particles per unit volume can be writ-
ten as

〈N〉
V

�
1
λ3 g3/2(z) (8)
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In the process of approximating the summation over
the quantum state by integral over momenta, have
inadvertantly assigned weight zero to the lowest (p �

0) term. This is clearly wrong, and we would like to
separate out the zero energy contribution from the sum.
That term is simply 〈n0〉 � z

1−z which is obtained by
putting k � 0 and εk � 0 in

〈nk〉 �
1

z−1eβεk − 1
.

Thus, the correct expression for the number of parti-
cles per unit volume reads as

〈N〉
V

�
〈n0〉
V

+
1
λ3 g3/2(z) (9)

The equation of state can now be written as

PV
kT

�−
∑

j

log(1 − ze−βε j )

�
4πV

h3

∫ ∞

0
p2 log(1 − ze−βp2/2m)dp

�
2V√
πh3
(2mπ/β)3/2

∫ ∞

0

√
t log(1 − ze−t)dt(10)
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The integration can be done by parts to obtain

P
kT

�− 2√
πh3
(2mπ/β)3/2

∫ ∞

0

√
t log(1 − ze−t)dt

�− 2√
π

1
λ3

[
t3/2

(3/2) log(1 − ze−t)
����∞
0

−2
3

∫ ∞

0

t3/2ze−t

1 − ze−t dt
]

�
1
λ3

1
Γ(5/2)

∫ ∞

0

t5/2−1

z−1e t − 1
dt (11)

Or
P
kT

�
1
λ3 g5/2(z) (12)

Bose-Einstein condensation

Let us look at the average number of particles of the
Bose-gas in a bit more detail

〈N〉
V

�
〈n0〉
V

+
1
λ3 g3/2(z) (13)

Now in order that 〈n0〉 � z
1−z be non-negative, z is

constrained to be 0 ≤ z ≤ 1. Also g3/2(z) is a mono-
tonically increasing function of z. Thus the maximum
value that g3/2(z) can take is g3/2(1). In the above
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equation, 1
λ3 g3/2(z) represents the number of parti-

cles per unit volume that are present in the energy
levels other than the ground state. The maximum par-
ticles per unit volume that all the excited states can
hold is 1

λ3 g3/2(1). As long as the total number of parti-
cles 〈N〉V , is less than 1

λ3 g3/2(1), all the particles can
fit in the excited states. One can see that number of
particles that excited states can hold decreases as
temperature goes down, because it is proportional to
T3/2.
As temperature is lowered, eventually 1

λ3 g3/2(1), be-
comes smaller than 〈N〉V and the excited states can
no longer hold all the particles. The surplus particles
are pushed to the ground state. It turns out that at
low enough temperature, this phenomenon happens
with a spectacular effect. Almost all the particles go
en-mass to the ground state. This phenomenon is
called Bose-Einstein condensation. The temperature,
below which the ground state begins to be populated,
can be determined from the following condition

〈N〉
V

�
1
λ3 g3/2(1) (14)
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The transition temperature is thus given by

Tc �
h2

2πmk

(
〈N〉/V
g3/2(1)

)2/3

At temperatures below Tc more and more particles go
to lowest energy state. If one keeps the temperature
fixed, and decreases to volume to increase the den-
sity of the gas, equation (15) can also be interpreted
as defining a critical particle-density above which the
Bose-Einstein condensation begins. Thus we can
write, for the critical particle-density(

〈N〉
V

)
c
�

1
λ3 g3/2(1) (15)

Appendix: Particle in a box with periodic bound-
ary

For a particle in a box in 1 dimension, the Schrödinger
equation is d2ψ(x)

dx2 + k2ψ(x) � 0, where k2 � 2mE/~2. You
can see that since for a free particle, the momentum is
defined as p �

√
2mE, here the momentum values will be

given by ~k. You know that the general solution is

ψ(x) � Ae ikx
+ Be−ikx , (16)
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where A and B are unknown constants. The derivative of
this function is

ψ′(x) � ikAe ikx − ikBe−ikx . (17)

If we assume that the box does not have rigid walls, but one
end is the same as the other, the ψ(0) should be the same
as ψ(L). Also, since it has to be continuous everywhere,
it should also satisfy ψ′(0) � ψ′(L). These two conditions
give

A + B�Ae ikL
+ Be−ikL

A − B�Ae ikL − Be−ikL . (18)

Adding these two leads us to 1 � e ikL. The only solution
of this is kL � 2nπ. Since p � ~k, we get the following
possible values of momentum:

pn � ~k � 2nπ~/L � nh/L.


	 Thermodynamic Properties of Ideal Gases
	 Ideal Bose Gas
	 Bose-Einstein condensation
	Appendix: Particle in a box with periodic boundary

